C++ Neural Networks and Fuzzy Logic: Preface


Activations, Outputs, and Their Updating



Download 1,14 Mb.
Pdf ko'rish
bet346/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   342   343   344   345   346   347   348   349   ...   443
Bog'liq
C neural networks and fuzzy logic

Activations, Outputs, and Their Updating

We denote the activation of the neuron in the ith row and jth column by a



ij

, and the output is denoted by x



ij

. A


time constant Ä, and a gain » are used as well. A constant m is another parameter used. Also, ”t denotes the

increment in time, from one cycle to the next. Keep in mind that the index for the summation £ ranges from 1

to n, the number of cities. Excluded values of the index are shown by the use of the symbol `.

The change in the activation is then given by ”a



ij

, where:


”a

ij

 = ”t (Term



1

 + Term


2

 + Term


3

 + Term


4

 + Term


5

)

Term



1

 = − a


ij

Term



2

 = − A


1 k`j

x

ik



Term

3

 = − A



2

£

k`i



x

kj

Term



4

 = − A


3

i



 £

k

x



ik

 − m)


Term

5

 = − A



4

 £

k`i



d

ik

(x



k,j+1

 + x


k,j−1

)

To update the activation of the neuron in the ith row and jth column, you take:



a

ijnew = 


a

ijold + ”

a

ij

The output of a neuron in the ith row and jth column is calculated from:



x

in

 = (1 + tanh(»a



ij

))/2


NOTE: 

, which is the original sigmoid function

The function used here is the hyperbolic tangent function. The gain parameter mentioned earlier » is. The

output of each neuron is calculated after updating the activation. Ideally, you want to get the outputs as 0’s

and 1’s, preferably a single one for each row and each column, to represent a tour that satisfies the conditions

of the problem. But the hyperbolic tangent function gives a real number, and you have to settle for a close

enough value to 1 or 0. You may get, for example, 0.96 instead of 1, or 0.07 instead of 0. The solution is to be

obtained from such values by rounding up or down so that 1 or 0 will be used, as the case may be

C++ Neural Networks and Fuzzy Logic:Preface

Inputs


342


Previous Table of Contents Next

Copyright ©

 IDG Books Worldwide, Inc.

C++ Neural Networks and Fuzzy Logic:Preface

Inputs

343




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   342   343   344   345   346   347   348   349   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish