C++ Neural Networks and Fuzzy Logic: Preface


•  Linear objective function: Maximize Z = 3X 1  + 4X 2  + 5.7X 3 •



Download 1,14 Mb.
Pdf ko'rish
bet336/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   332   333   334   335   336   337   338   339   ...   443
Bog'liq
C neural networks and fuzzy logic

  Linear objective function: Maximize Z = 3X

1

 + 4X



2

 + 5.7X

3

  Linear equality constraint: 13X

1

 − 4.5X



2

 + 7X

3

 = 22


  Linear inequality constraint: 3.6X

1

 + 8.4X



2

 − 1.7X

3

 d 10.9


  Nonlinear objective function: Minimize Z = 5X

2

 + 7XY + Y



2

  Nonlinear equality constraint: 4X + 3XY + 7Y + 2Y

2

 = 37.6



  Nonlinear inequality constraint: 4.8X + 5.3XY + 6.2Y

2

 e 34.56



An example of a linear programming problem is the blending problem. An example of a blending problem is

that of making different flavors of ice cream blending different ingredients, such as sugar, a variety of nuts,

and so on, to produce different amounts of ice cream of many flavors. The objective in the problem is to find

C++ Neural Networks and Fuzzy Logic:Preface

Chapter 15 Application to Nonlinear Optimization

332



the amounts of individual flavors of ice cream to produce with given supplies of all the ingredients, so the

total profit is maximized.

A nonlinear optimization problem example is the quadratic programming problem. The constraints are all

linear but the objective function is a quadratic form. A quadratic form is an expression of two variables with 2

for the sum of the exponents of the two variables in each term.

An example of a quadratic programming problem, is a simple investment strategy problem that can be stated

as follows. You want to invest a certain amount in a growth stock and in a speculative stock, achieving at least

25% return. You want to limit your investment in the speculative stock to no more than 40% of the total

investment. You figure that the expected return on the growth stock is 18%, while that on the speculative

stock is 38%. Suppose G and S represent the proportion of your investment in the growth stock and the

speculative stock, respectively. So far you have specified the following constraints. These are linear

constraints:



G + S = 1

This says the proportions add up to 1.



S d 0.4

This says the proportion invested in speculative stock is no more than 40%.

1.18G + 1.38S e 1.25

This says the expected return from these investments should be at least 25%.

Now the objective function needs to be specified. You have specified already the expected return you want to

achieve. Suppose that you are a conservative investor and want to minimize the variance of the return. The

variance works out as a quadratic form. Suppose it is determined to be:

    2G


2

  + 3S


2

 − GS


This quadratic form, which is a function of G and S, is your objective function that you want to minimize

subject to the (linear) constraints previously stated.




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   332   333   334   335   336   337   338   339   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish