C++ Neural Networks and Fuzzy Logic: Preface


C++ Neural Networks and Fuzzy Logic



Download 1,14 Mb.
Pdf ko'rish
bet262/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   258   259   260   261   262   263   264   265   ...   443
Bog'liq
C neural networks and fuzzy logic

C++ Neural Networks and Fuzzy Logic

by Valluru B. Rao

MTBooks, IDG Books Worldwide, Inc.



ISBN: 1558515526   Pub Date: 06/01/95

Previous Table of Contents Next

To see the outputs of all the patterns, we need to copy the training.dat file to the test.dat file and rerun the

simulator in Test mode. Remember to delete the expected output field once you copy the file.

Running the simulator in Test mode (0) shows the following result in the output.dat file:

for input vector:

0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  1.000000

0.000000  1.000000  0.000000  1.000000  0.000000  0.000000  0.000000

1.000000  1.000000  0.000000  0.000000  0.000000  1.000000  1.000000

1.000000  1.000000  1.000000  1.000000  1.000000  0.000000  0.000000

0.000000  1.000000  1.000000  0.000000  0.000000  0.000000  1.000000

output vector is:

0.005010  0.002405  0.000141

−−−−−−−−−−−

for input vector:

1.000000  0.000000  0.000000  0.000000  1.000000  0.000000  1.000000

0.000000  1.000000  0.000000  0.000000  0.000000  1.000000  0.000000

0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000

0.000000  1.000000  0.000000  0.000000  0.000000  1.000000  0.000000

1.000000  0.000000  1.000000  0.000000  0.000000  0.000000  1.000000

output vector is:

0.001230  0.997844  0.000663

−−−−−−−−−−−

for input vector:

1.000000  0.000000  0.000000  0.000000  1.000000  1.000000  0.000000

0.000000  0.000000  1.000000  1.000000  0.000000  0.000000  0.000000

1.000000  1.000000  1.000000  1.000000  1.000000  1.000000  1.000000

0.000000  0.000000  0.000000  1.000000  1.000000  0.000000  0.000000

0.000000  1.000000  1.000000  0.000000  0.000000  0.000000  1.000000

output vector is:

0.995348  0.000253  0.002677

−−−−−−−−−−−

for input vector:

1.000000  1.000000  1.000000  1.000000  1.000000  1.000000  0.000000

0.000000  0.000000  1.000000  1.000000  0.000000  0.000000  0.000000

1.000000  1.000000  1.000000  1.000000  1.000000  1.000000  1.000000

0.000000  0.000000  0.000000  1.000000  1.000000  0.000000  0.000000

0.000000  1.000000  1.000000  1.000000  1.000000  1.000000  1.000000

output vector is:

0.999966  0.000982  0.997594

−−−−−−−−−−−

for input vector:

0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000

1.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000

0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000

0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  1.000000

0.000000  0.000000  0.000000  0.000000  1.000000  0.000000  0.000000

output vector is:

0.999637  0.998721  0.999330

−−−−−−−−−−−

C++ Neural Networks and Fuzzy Logic:Preface

Chapter 13 Backpropagation II

261



The training patterns are learned very well. If a smaller tolerance is used, it would be possible to complete the

learning in fewer cycles. What happens if we present a foreign character to the network? Let us create a new

test.dat file with two entries for the letters M and J, as follows:

1 0 0 0 1  1 1 0 1 1  1 0 1 0 1  1 0 0 0 1  1 0 0 0 1  1 0 0 0 1

0 0 1 0 0  0 0 1 0 0  0 0 1 0 0  0 0 1 0 0  0 0 1 0 0  0 0 1 0 0

1 0 0 0 1

0 1 1 1 1

The results should show each foreign character in the category closest to it. The middle layer of the network

acts as a feature detector. Since we specified five neurons, we have given the network the freedom to define

five features in the input training set to use to categorize inputs. The results in the output.dat file are shown as

follows.

for input vector:

1.000000  0.000000  0.000000  0.000000  1.000000  1.000000  1.000000

0.000000  1.000000  1.000000  1.000000  0.000000  1.000000  0.000000

1.000000  1.000000  0.000000  0.000000  0.000000  1.000000  1.000000

0.000000  0.000000  0.000000  1.000000  1.000000  0.000000  0.000000

0.000000  1.000000  1.000000  0.000000  0.000000  0.000000  1.000000

output vector is:

0.963513  0.000800  0.001231

−−−−−−−−−−−

for input vector:

0.000000  0.000000  1.000000  0.000000  0.000000  0.000000  0.000000

1.000000  0.000000  0.000000  0.000000  0.000000  1.000000  0.000000

0.000000  0.000000  0.000000  1.000000  0.000000  0.000000  0.000000

0.000000  1.000000  0.000000  0.000000  0.000000  0.000000  1.000000

0.000000  0.000000  0.000000  1.000000  1.000000  1.000000  1.000000

output vector is:

0.999469  0.996339  0.999157

−−−−−−−−−−−

In the first pattern, an M is categorized as an H, whereas in the second pattern, a J is categorized as an I, as

expected. The case of the first pattern seems reasonable since the H and M share many pixels in common.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   258   259   260   261   262   263   264   265   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish