C++ Neural Networks and Fuzzy Logic: Preface

x 3  = w 23 x

Download 1,14 Mb.
Pdf ko'rish
Hajmi1,14 Mb.
1   ...   22   23   24   25   26   27   28   29   ...   443
C neural networks and fuzzy logic
суицид, суицид, html tasks, html tasks


 = w




 + w






 = w




 + w




We will formalize the equations in Chapter 7, which details one of the training algorithms for the

feed−forward network called Backpropagation.

Note that you present information to this network at the leftmost nodes (layer 1) called the input layer. You

can take information from any other layer in the network, but in most cases do so from the rightmost node(s),

which make up the output layer. Weights are usually determined by a supervised training algorithm, where

you present examples to the network and adjust weights appropriately to achieve a desired response. Once you

have completed training, you can use the network without changing weights, and note the response for inputs

that you apply. Note that a detail not yet shown is a nonlinear scaling function that limits the range of the

weighted sum. This scaling function has the effect of clipping very large values in positive and negative

directions for each neuron so that the cumulative summing that occurs across the network stays within

reasonable bounds. Typical real number ranges for neuron inputs and outputs are –1 to +1 or 0 to +1. You will

see more about this network and applications for it in Chapter 7. Now let us contrast this neural network with

a completely different type of neural network, the Hopfield network, and present some simple applications for

the Hopfield network.

Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   ...   443

Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2023
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
axborot texnologiyalari
zbekiston respublikasi
maxsus ta’lim
guruh talabasi
nomidagi toshkent
O’zbekiston respublikasi
o’rta maxsus
toshkent axborot
texnologiyalari universiteti
xorazmiy nomidagi
davlat pedagogika
rivojlantirish vazirligi
pedagogika instituti
Ўзбекистон республикаси
tashkil etish
vazirligi muhammad
haqida tushuncha
таълим вазирлиги
toshkent davlat
respublikasi axborot
kommunikatsiyalarini rivojlantirish
O'zbekiston respublikasi
махсус таълим
vazirligi toshkent
fanidan tayyorlagan
saqlash vazirligi
bilan ishlash
Toshkent davlat
Ishdan maqsad
fanidan mustaqil
sog'liqni saqlash
uzbekistan coronavirus
respublikasi sog'liqni
coronavirus covid
koronavirus covid
vazirligi koronavirus
covid vaccination
risida sertifikat
qarshi emlanganlik
sertifikat ministry
vaccination certificate
haqida umumiy
matematika fakulteti
o’rta ta’lim
fanlar fakulteti
pedagogika universiteti
ishlab chiqarish
moliya instituti
fanining predmeti