C++ Neural Networks and Fuzzy Logic: Preface


x 3  = w 23 x



Download 1,14 Mb.
Pdf ko'rish
bet26/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   22   23   24   25   26   27   28   29   ...   443
Bog'liq
C neural networks and fuzzy logic
суицид, суицид, html tasks, html tasks
x

3

 = w


23

x

2

 + w



13

x

1

x

5

 = w


35

x

3

 + w



45

x

4

We will formalize the equations in Chapter 7, which details one of the training algorithms for the



feed−forward network called Backpropagation.

Note that you present information to this network at the leftmost nodes (layer 1) called the input layer. You

can take information from any other layer in the network, but in most cases do so from the rightmost node(s),

which make up the output layer. Weights are usually determined by a supervised training algorithm, where

you present examples to the network and adjust weights appropriately to achieve a desired response. Once you

have completed training, you can use the network without changing weights, and note the response for inputs

that you apply. Note that a detail not yet shown is a nonlinear scaling function that limits the range of the

weighted sum. This scaling function has the effect of clipping very large values in positive and negative

directions for each neuron so that the cumulative summing that occurs across the network stays within

reasonable bounds. Typical real number ranges for neuron inputs and outputs are –1 to +1 or 0 to +1. You will

see more about this network and applications for it in Chapter 7. Now let us contrast this neural network with

a completely different type of neural network, the Hopfield network, and present some simple applications for

the Hopfield network.


Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2022
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
axborot texnologiyalari
ta’lim vazirligi
zbekiston respublikasi
maxsus ta’lim
O’zbekiston respublikasi
nomidagi toshkent
guruh talabasi
o’rta maxsus
toshkent axborot
texnologiyalari universiteti
xorazmiy nomidagi
davlat pedagogika
rivojlantirish vazirligi
pedagogika instituti
vazirligi muhammad
haqida tushuncha
kommunikatsiyalarini rivojlantirish
respublikasi axborot
toshkent davlat
tashkil etish
vazirligi toshkent
Toshkent davlat
bilan ishlash
O'zbekiston respublikasi
matematika fakulteti
Ishdan maqsad
o’rta ta’lim
ta’limi vazirligi
fanining predmeti
saqlash vazirligi
moliya instituti
haqida umumiy
pedagogika universiteti
fanlar fakulteti
fanidan tayyorlagan
umumiy o’rta
samarqand davlat
ishlab chiqarish
fanidan mustaqil
Toshkent axborot
universiteti fizika
fizika matematika
uzbekistan coronavirus
Darsning maqsadi
sinflar uchun
Buxoro davlat
coronavirus covid
Samarqand davlat
koronavirus covid
sog'liqni saqlash