Javob:
2-misol.
Elementar funksiya hosilasini :
a) (e6x – sinx)=6e6x -cosx b) (cosx – lnx)=-sinx-
3-misol.
f (4) va f (5) ni toping.
Yechish:
a) (2x3 +3x2-12x –6)=6x2+6x-12 b) (3x4 – 4x3 –12x2 +8)=12x3-12x2-24x
f (4)= 6.42+6.4-12=108 f (4)=12.43-12.42-24.4=480
f (5)= 6.52+6.5-12=168 f (5)=12.53-12.52-24.5=1080
Javob: a) f (4)=108; f (5)=168; b) f (4)=480; f (5)=1080
4-misol.
f(x)=2x 4-8x2+5 funksiyaning [-3; 4] kesmadagi eng katta va eng
kichik qiymatini toping.
Yechish:
f(-3)= 2.(-3)4-8. (-3)2+5=95
f(4)=2.44-8.42+5=385
f (x)=2x 4-8x2+5=8x3-16x
f (-3)=8.(-3)3-16.(-3)=-216+48=-168
f (4)=8.43-16.4=512-24=488
Hosil bo’lgan qiymatlar: 95; 385; -168; 488
Bu qiymatlar ichida eng katta qiymati 488 va eng kichik qiymat -168.
Javob: eng katta qiymati 488 va eng kichik qiymat -168.
II-variant.
1. Kesmaning bir uchi A(2;3;-1) va uning o’rtasi C(1;1;1) berilgan.
Kesmaning ikkinchi uchi B(x;y;z) ni toping.
Yechish :
AC=CB => AC vektorni yasaymiz: a1=1-2=-1
a2=1-3=-2
a3=1-(-1)=2
Demak, AC(-1;-2;2)
CB vektorni yasaymiz : b1=x-1
b2=y-1
b3=z-1.
Masala shartidan foydalanib, B vektorning koordinatalarini topamiz:
x-1=-1 => x=0
y-1=-2 => y=-1
z-1=2 => z=3 Demak, B(0;-1;3).
Javob: B(0;-1;3).
2. Elementar funksiya hosilasini toping.
a) e –6x +log3x b) sinx – 9e 5x
Yechish:
a) (e –6x +log3x)=-6 e –6x + b) (sinx – 9e 5x)=cosx-45e 5x
3. f (2) va f (3) ni toping.
Yechish:
a) (2x5 +3x3-12x2 –6)=10x4+9x2-24x b) (3x4 – 4x2 –12x3 +8)=12x3-8x-36x2
f (2)=10.24+9.22-24.2=148 f (2)=12.23-8.2-36.22=-64
f (3)=10.34+9.32-24.3=819 f (3)=12.33-8.3-36.32=-24
Javob: a) f (2)= 148 f (3)=819 b) f (2)=-64 f (3)=-24
4. f(x)=4x4-6x2+8 funksiyaning [-2; 3] kesmadagi eng katta va eng
kichik qiymatini toping.
Yechish:
f(-2)=4.(-2)4-6.(-2)2+8=80
f(3)=4.34-6.32+8=278
f (x)=(4x4-6x2+8)=16x3-12x
f (-2)=16.(-2)3-12.(-2)=-104
f (3)=16.33-12.3=396
Hosil bo’lgan qiymatlar: 80; 278; -104; 396
Bu qiymatlar ichida eng katta qiymati 396 va eng kichik qiymat -104.
Javob: eng katta qiymati 396 va eng kichik qiymat -104.
Oraliq nazorat ish –3.
I-variant.
1-masala.
1. Berilgan:
To’g’ri burchakli parallelepiped Yechish:
a=7, b=6, h=6, d=? d2=72+62+62=49+36+36=841
d=29
Javob: 11
2. Berilgan: ABCDA1B1C1D1
muntazam to’rtburchakli prizma B1 C1
B D = 8 sm DC1 = 7 sm A1 D1
ABCD kvadrat.
B1D topilsin B
C
A D
Yechilishi
Asosdagi ABCD kvadratning tomoni a bilan, prizmaning yon qirrasini AA1=h deb belgilaymiz. So’ngra ABD, DCC1, BB1D to’g’ri burchakli uchburchaklardan Pifagor teoremasiga asosan quyidagilarni topamiz:
Δ ABD : BD2=a2+a2 ΔDCC1: C1D2=h2+a2 ΔBB1D: B1D2= h2+BD2
82=2a2 72=h2+32 B1D2=17+82
a2=32 h2=49-32 B1D2=17+64=81
h2=17 B1D=9
3. 9 ta qirrasi bo’lgan ko’pyoq - asoslari uchburchak bo’lgan prizma
II-variant.
1-masala.
To’g’ri burchakli parallelepipedning uchta o’lchovlari berilgan bo’lsa, uning dioganalini toping: 12, 21, 16.
Berilgan:
To’g’ri burchakli parallelepiped Yechish:
a=12, b=21, h=16, d=? d2=122+212+162=144+441+256=841
d=11
Javob: 11
2-masala. S
B erilgan:
SABC uchburchakli piramida
ΔABC-teng yonli
B DAC, AC=12sm B
AB=BC=10 sm A
A S=BS=CS=13 sm. D
SO=? C
Yechish:
AS=CS=BS => ularning proyeksiyalari ham o’zaro teng, AO=BO=CO. O nuqta ΔABC ga tashqi chizilgan aylananing markazi va AO=R ushbu aylananing radiusi va uni quyidagi formula bilan topamiz: . Uchburchaklarning radiusini geron formulasi yordamida topamiz:
. U holda
To’g’ri burchakli ΔAOS dan Pifagor teoremasi yordamida topamiz: SO2=AS2-AO2=132-
SO= Javob:
3. 8 ta qirrasi bo’lgan ko’pyoq – asosi to’rt burchak bo’lgan piramida.
Nazorat ish – 4.
I-variant.
1. Funksiya hosilasini toping. y=( )=
2. Berilgan funksiyaning boshlang’ich funksiyasini toping.
e8x- sin3x
3. Quyidagi chiziqlar bilan chegaralangan figuralarning yuzlarini toping.
y=6x-x2 parabola va y=x+4 to’g’ri chiziq
y =6x-x2 va y=x+4 funksiya grafigini yasaymiz.
x y x y
1 5 1 5
0 0 2 6
3 9 3 7
4 8 4 8
5 5 5 9
6 0
S=
Parabola va to’g’ri chiziqlarning kesishgan nuqtalarining x o’qi bilan kesishgan nuqtalarini integral uchun chegara deb olamiz:
II-variant
1. Funksiya hosilasini toping.
y=
2. Berilgan funksiyaning boshlang’ich funksiyasini toping.
e2x- cos5x
3. Quyidagi chiziqlar bilan chegaralangan figuralarning yuzlarini toping.
y= 4-x2 parabola va y=x+2 to’g’ri chiziq
x y x y
1 3 1 3
2 0 2 4
-1 3 0 2
-2 0 -1 1
0 4 -2 0
S=
y=4-x2 va y= x+2 funksiya grafigini yasaymiz.
x y x y
1 3 1 3
2 0 2 4
-1 3 0 2
-2 0 -1 1
0 4 -2 0
Nazorat ish-5.
I-variant.
1-masala.
A gar 1 m2 tomni bo’yashga 0,12 kg bo’yoq ketsa, asosining diametric 10m va balandligi 12 m bo’lgan konus shaklidagi tunuka tomni bo’yash uchun necha kilogramm bo’yoq ketadi? B
Berilgan: Yechish:
konus shaklidagi tom 2R=10 => R=5m
1m2 => 0,12 kg bo’yoq l h ΔAOB dan AB=l=
AC=10 m AB=l= m
h=12 m A O C Syon=Rl=.5.13=65=204,1(m2).
bo’yoq=? 204,1. 0,12=24,492 (kg).
Javob: tomni bo’yash uchun 24,492 kg bo’yoq kerak.
2-masala.
Diametri 25 sm bo’lgan koptok uchun necha kvadrat metr rezina sarf bo’lgan?
Berilgan: Yechish:
D =25sm bo’lgan koptok D=25sm=0,25m
yasash uchun qancha rezina Ssh=4R2=D2
kerak? Ssh=3,14. 0,252=0,196 (m2)
Javob: koptok yasash uchun 0,196 m2 rezina kerak bo’ladi.
3-masala.
37 xillik kartadan iborat dasturdan 5 tasini necha xil usulda olish mumkin?
II-variant.
1-masala.
Konusning balandligi 28 m va asosining radiusi 10 m. Konusning yon sirti topilsin.
B
Berilgan: Yechish:
konus. l Syon k=Rl=10l
h=28m h ΔAOB dan l=
R =10m l= (m)
Syon k=? A C Syon k=10 . 29 =290 (m2).
Javob: konus yon sirti 290 m2
2-masala.
Silindr to’la sirtining yuzi 62 sm2, yon sirtining yuzi 30 sm2 bo’lsa, silindrning balandligi topilsin.
Berilgan: Yechish:
A B1 – silindr natijada
St=62 sm2
Syon=30 sm2 => =>
H=? =>
Javob: silindr balandligi .
3-masala.
41 xillik kartadan iborat dasturdan 6 tasini necha xil usulda olish mumkin?
1.
Oraliq nazorat ish – 1.
I-variant
1. Agar A to’plam x2-7x+6=0 tenglamaning yechimlari to’plami va
B={1;6} bo’lsa, A=B bo’lishini isbotlang.
2. Hisoblang:
a) b) (50000-1397,3):(20,4+33,603)
3. 175 % i 78,75 ni tashkil qiladigan sonni toping.
II-variant
1. Agar A={3;4;5} va B to’plam x2-7x+12=0 tenglamaning yechimlari to’plami bo’lsa, BA
bo’lishini isbotlang.
2. Hisoblang:
a) b) (2779,6+8024,4):(1,98+2,02)
3. 46,6 soni 11,65 ning necha foizini tashkil qiladi?
Do'stlaringiz bilan baham: |