Ионовородный показатель (его обозначают как рН) характеризует содержание водородных ионов в среде и численно равен отрицательному десятичному логарифму концентрации ионов Н+ в данной среде, выраженной в граммах на литр. Для дистиллированной воды рН равно 7. Среди привычных нам объектов томатный сок имеет рН около 4, столовый уксус — около 3, а лимонный сок —около 2, Природные воды с рН от 6,95 до 7,3 считают нейтральными, ниже этого предела — кислыми, выше — щелочными, Морская вода имеет рН 8, озерная вода, которую называют «мягкой»,— рН от 5 до 6.
В современных донных осадках морей Eh изменяется в пределах от +600 мВ до —350 мВ.
Фотоавтотрофы в процессе своей жизнедеятельности непрерывно производят кислород. Благодаря этой реакции в биосфере повсеместно (за исключением ее подземной части отдельных участков Мирового океана) существует окислительная обстановка, а в атмосфере содержание углекислого газа удерживается на низком уровне.
Однако при фотосинтезе, как известно, не только выделяется кислород — сильный окислитель, но возникают и органические вещества. При их разложения в анаэробных условиях образуются водород, аммиак, органические кислоты и анионы SO, PO, N. Как показал В. А. Когда, продукты разложения степных трав образуют растворы нейтральной и слабощелочное реакции, некоторые виды полыни и саксаула дают щелочную реакцию (рН 8—8,5), а масса отмершей хвои, вереска, лишайников и сфагнума — кислую (пр. .4,5 —4,5).
Вспоминаются слова академика Б. Б. Полынова: «Прежде всего я считаю неправильным указание, которое так часто встречается, что то или иное явление — скажем, образование осадка — зависит не от организмов, а от величин рН. Я считаю неправильным само противоположение рН организмам. Представим себе, что кого-либо заинтересовал высокий рост какого-либо дерева, и на его вопрос о причинах этого роста ему отвечают, что рост дерева зависит от количества метров, укладывающихся по длине его ствола. Я полагаю, что объяснение со ссылкой на рН ничем не отличается от такого, потому что рН тоже мера — тот же аршин или метр и первозданной причиной не монет быть, а кроме того, и сама рН очень часто находится в прямой зависимости от количества СО2, выделяемого организмами».
Высказывание Б. Б. Полынова хорошо подтверждается па примере природных вод Земли. Так, кислая реакция вод чаще всего связана с растворением в них биогенных веществ — углекислого газа или гуминовых кислот. Процесс фотосинтеза в поверхностных частях водоемов вызывает уменьшение парциального давления углекислого газа и увеличение рН. Процессы же разложения необиогенной органики идут во всей толще вод, и живое население везде дышит, а это приводит к противоположным результатам — увеличению парциального давления углекислого газа в воде и к понижению рН.
В донных осадках водоемов физико-химические условия среды определяются главным образом наличием органического необиогенного вещества: есть оно — обстановка восстановительная, нет — окислительная. Восстановительные условия создаются в застойных средах при разложении отмершей органики сульфатредуцирующими бактериями с образованием сероводорода. Если при этом сероводород из среды не удаляется, происходит самоотравление системы. I! Черном море средообразующее действие живого вещества проявляется особенно ярко: донная пленка сульфатредуцирующнх бактерий толщиной до 5 см отравляет сероводородом более чем километровую толщу морской воды, ограничивая распространение зоопланктона и крупных морских животных лишь верхними 200—300 м водной толщи!
Наряду с сульфаторедуцирующими важную роль в биосфере играют и тионовые бактерии. Если сульфатредуцй1-рующие бактерии превращают сульфат-ион в сероводород, то тионовые осуществляют обратную реакцию — окисляют сероводород до серной кислоты. Средообразующую роль этой реакции доказывать не приходится.
Ситуацию, близкую к драматической, тионовые бактерии создали при строительстве Киевского метрополитена. До начала подземных работ они влачили жалкое существование в палеогеновых песках. Доступ кислорода на глубину был затруднен, и бактерии испытывали «кисло-
родное голодание». При строительстве метро в забои стали закачивать сжатый воздух, и бактерии ожили. В результате их деятельности водородный показатель среды достиг значений меньше 1 (иначе говоря, подземные воды превратились в крепкий раствор серной кислоты). Массивные болты железобетонных конструкций за один-два месяца разрушались наполовину. Положение становилось критическим, а строители разводили руками — такого никогда не бывало. Выручили ученые из Института микробиологии и вирусологии им. Д. К. Заболотного в Киеве — они нашли виновников и посоветовали изменить способ проходки, Строителям пришлось отказаться от закачки в
толь сжатого воздуха. Пример о Киевском метро — не единственный, когда микробиологи приходят на помощь строителям. Известно, как мною хлопот причиняют при строительстве плывуны, особенно их разновидность, которую называют истинными плывунами (есть еще ложные плывуны, с которыми справляться легче). Эти текучие грунты, обладающие огромным запасом внутренней энергии, перемещаются массой, как тесто или свежеприготовленный бетон.
Грунтовед Варвара Васильевна Радина при исследовании грунтов проектируемой Нижне-Обской ГЭС доказала, что необычные свойства истинных плывунов определяются средообразующей деятельностью сапротрофных бактерий, которые перерабатывают всегда имеющееся в плывунах органическое вещество. 90%образующихся при атом продуктов составляют газы. При затрудненном обмене с окружающей средой- эти газы накапливаются в грунтах и вкупе с содержащимися в них коллоидами переводят их в пластичное состояние. Создается явление, сходное с «воздушной подушкой», применяемой 'в современной технике, когда подаваемым под давлением воздухом снимают трение между поверхностями двух сред. В роли компрессора в данном случае выступают бактерии. А степень разжижения грунтов зависит от наличия пищи для бактерии (калия, фосфора, отмершей органики).
Явление, описанное 15. П. Радиной, признано открытием — случай, в геологии нечастый. Формула этого открытия, зарегистрированного 13 октября 1970г., следующая: «Установлено неизвестное ранее явление образования истинных плывунов, заключающееся в том, что в водонасыщенной дисперсной породе происходит накопление в виде пузырьков газообразных продуктов жизнедеятельности микроорганизмов, которые вызывают избыточное давление в жидкой фазе породы, являющееся энергетическим фактором ее подвижности» 11.
Механизм образования истинных плывунов прояснился. Видимо, не за горами и биологическое управление плывунами.
В водных экосистемах средообразующая роль живого вещества, пожалуй, проявляется наиболее отчетливо и многогранно. «Разнородное живое вещество океана, жизнь моря, взятая в целом, может быть рассматриваема как специальный механизм, совершенно изменяющий химию моря»,— писал В. И. Вернадский 12.
Важнейшим средообразующим фактором в водных экосистемах являются фильтраторы зоопланктона и бентоса. Байкал своей исключительной чистотой обязан тому, что всю его водную массу трижды за год процеживает эндемичный веслоногий рачок эпишура. А организмы, извлекающие из водной толщи для построения своего скелета карбонат кальция или кремнезем, изменяют не только ее солевой состав, но и кислотность среды. Среди морских сообществ, оказывающих наибольшее влияние на окружающую среду, выделяются коралловые рифы, мидиевые банки, поселения морских ежей, заросли бентосных водорослей — макрофитов. Значительное влияние на водную среду оказывают и птичьи базары. У скал, на которых они расположены, прибрежная полоса шириной около 50 м интенсивно обогащается фекалиями птиц. В период гнездования содержание фосфатов и нитратов в морской воде может повышаться больше чем в 100 раз, а площадь участков моря, обогащенных этими элементами, иногда преиздает 200 км 2.
Па суше мощнейшим средообразующим агентом являются леса. Они регулируют поверхностный слой, увеличивают количество атмосферных осадков, охраняют поля от суховеев и пыльных бурь, очищают атмосферу от вредных газов и обогащают ее кислородом, озоном и фитонцидами. Гектар леса за год очищает 18 млн. м3 воздуха и обеспечивает кислородом семь человек. Посадки некоторых древесных и даже травянистых культур, обладающих повышенной рационной способностью, используются для переувлажненных земель. Так, разведение в Колхиде эвкалиптов позволило успешно осушить и преобразовать в благодатный край эту прежде заболоченную и зараженную малярией территорию.
Менее всего средообразующее влияние живого вещества, должно проявляться в слабо заселенных слоях биосферы. Но — очередной парадокс! — именно в роль живого вещества оказывается весьма значимый. Биогеограф В. С. Залетаев пишет (речь идет о пустынях): «Животные и растения здесь наряду с факторами горами абиотической среды оказываются мощными агентами средообразовательного процесса, влияющими па формирование рельефа поверхности, развитие ветровых процессов, гидрологические свойства почв и миграцию солей в них, на структуру и плотность поверхности, особенности микроклимата и в конечном структуру биогеоценозов и сам облик ландшафтов».
Живое вещество изменяет не только химические, но и физические параметры среды, ее термические, электрические и механические характеристики. Существует, например, аргументированное мнение, что «бабье лето» вызвано деятельностью живого вещества, точнее, осенним пиком деятельности сапротрофов. Все обстоит довольно просто: в это время много разлагающейся органики — значит, при ее разложении сапротрофами выделяется много тепла. Выходит, что «бабье лето» вызывают грибы...
Интересное проявление средообразующей деятельности живого вещества было обнаружено недавно советскими океанологами сначала на чёрном, а лотом и на Белом морях. Оно получило название «биоэлектрического эффекта». Это явление заключается в создании живым веществом (фитопланктоном) электрического поля с отрицательным зарядом, а скоплениями необиогенного вещества (отмершего планктона) — положительных полей.
Многообразная средообразующая деятельность живого вещества выявляется в последние годы во все большем объеме и в самых различных проявлениях. Один из наиболее общих выводов сформулировали недавно ученые Сибирского отделения СССР: «Растительный мир активно влияет на изменение газового состава, в атмосфере и соответственно на ионный состав океанической воды, в то время как животные почти не оказывают влияния на атмосферу, но изменяют катионный состав, морской воды».
В закономерностях влияния живого вещества на среду, видимо, многое еще остается неизвестным, а то, что известно, нуждается во всестороннем обдумывании и обобщении. Поэтому мы излагали вопрос о средообразующей роли живого вещества так подробно и с привлечением самых разнообразных фактов.
Создание общей теории средообразующей роли жизни — дело будущего.
Наконец, пятая основная функция живого вещества в биосфере — транспортная. Еще со времен Ньютона известно, что перемещение потоков вещества на нашей планете определяется силой земного тяготения. Неживое вещество само по себе перемещается по наклонной плоскости исключительно сверху вниз. Только в этом направлении движутся реки, ледники, лавины, осыпи.
Живое вещество — единственный (помимо поверхностного натяжения) фактор, обусловливающий обратное перемещение вещества — снизу вверх, из океана — на континенты, реализующий тем самым «восходящую» ветвь биогеохимического круговорота. В первую очередь это касается воды.
Высшие растения осуществляют транспирацию влаги из почвы в атмосферу. Подсчитано, что при образовании каждого грамма биомассы высшие растения испаряют 100 г воды. Что же касается горизонтального переноса водяных паров в глубь континентов, то оно также происходит при участии наземных растений. В самом деле, осадки выпадают лишь на небольшом уда-
лении от источников испарения (морей или крупных рек им эта влага впитывается растениями, вновь испаряется ими и переносится в глубь материка воздушными потоками. Этот процесс повторяется неоднократно. Влаги, как ступенькам лестницы, поднимается на «верхние этажи» континентов. Не будь растений, в отдалении моря районы континентов, как известно, потребляют из почвы не дистилированную воду, а питательный раствор, состав которого они сами регламентируют (не обходится, правда, без некоторого принудительного ассортимента). Элементам
минерального питания растений, таким образом, также обеспечен биогенный транспорт, по крайней мере вертикаль. Вносят свою лепту в вертикальное перемещение вещества в наземных экосистемах и роющие организмы, доставляющие на поверхность материал из подпочвенных горизонтов. Во второй главе мы уже говорили, что перемещение вещества по латерали в биосфере осуществляется многоклеточными животными, большинство которых обладает активной формой передвижения. В море в транспортировке материала велика роль нектона, в частности рыб и млекопитающих. В глобальном масштабе благодаря транспортной функции живого вещества осуществляется перенос вещества против направления стока. «Питание наземных организмов морской пищей,— писал Вернадский,— идет в таких размерах, что, может быть, компенсирует — во всяком случае возвращает на сушу — соизмеримую часть тех масс химических элементов, которые реки в растворе приносят с суши в море. С, мезозойской эры эту роль главным образом играют птицы» *. Такую же роль выполняют и стаи морских рыб, поднимающиеся па нерест вверх по рекам, а па пресноводных водоемов значительная часть вещества выносится на сушу полчищами крылатых насекомых. «Мыши и люди, почвы и песни — возможно, всего средства, замедляющие движение атомов к морю»,— писал популярный американский писатель и лесовод Олдо Гопольд (1887 1948).
Спиртная функция осуществляется живым веществом активно. «Двигателем» при этом являются процессы жизнедеятельности. Однако бывает иначе, когда живые организмы лишь пассивно способствуют перемещению вещества, а в качестве «двигателя» выступают другие механизмы. Такого рода транспортную функцию выполняют цианобактерии и водоросли.
Известно, что дно некоторых водоемов бывает, покрыто толстым ковром цианобактерии (в научной литературе такие ковры называют матами). Когда фотосинтез происходит наиболее интенсивно, в матах накапливается кислород. Под действием ere подъемной силы фрагменты мата отрываются от дна, захватывая с собой частицы грунта. В устье Волги в весенние дни всплывших дернинок цианобактерии бывает так много, что создается впечатление ледохода. Это — первый случай.
В другом случае пассивную транспортную функцию в море осуществляют бентосные бурые водоросли. Во время штормов они отрываются от дна вместе с галькой, к которой прикреплены. По наблюдениям, проведенным на Баренцевом море, вес открываемой таким образом гальки (и даже валунов) в отдельных случаях достигает 3,5 кг. Эти своеобразные «плавсредства» оказываются во власти бушующей стихии и становятся «на якорь» только после того, как волнение стихает — зачастую довольно далеко от места первоначального произрастания.
«Живое вещество охватывает и перестраивает все химические процессы биосферы,— писал Вернадский,— Живое вещество есть самая мощная геологическая сила, растущая с ходом времени» 13 (из этого высказывания и позаимствовано название данной главы). Воздавая должное памяти великого основоположника учения о биосфере, следующее обобщение профессор А. И. Перельман предложил называть «законом Вернадского»: «Миграция химических элементов в биосфере осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (О2, СО2, H2S и т. д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Земле в течение всей геологической истории».
Do'stlaringiz bilan baham: |