Big Data management in smart grid: concepts, requirements and implementation


Big Data implementation in smart grid: the case of customer data analytics



Download 1,86 Mb.
Pdf ko'rish
bet16/20
Sana07.03.2022
Hajmi1,86 Mb.
#485852
1   ...   12   13   14   15   16   17   18   19   20
Bog'liq
s40537-017-0070-y

Big Data implementation in smart grid: the case of customer data analytics
In this section, the focus will be on customers data analytics, because it involves the 
smart consumers concept, which makes consumers as potential producers of clean 
energy, players in their consumption and also main actors in production and consump-
tion balancing. Customer data analytics is a great opportunity for utilities to understand 
customer behaviour better, and be able to make strategic decisions.
Added value of customer data analytics
Big Data analytics of customers data become a necessity and not a choice for electrical 
companies. Consumers are participating in smart grids as end customers through smart 
meters that offer them better control of their own consumption. Demand Response (DR) 
programs are used by utilities to obtain real-time information of the demand curves in 
the various points of consumption in order to calibrate and prognosticate more precisely. 
Thus, the production curve can be regulated according to demand more efficiently and 
reduce the losses of “overproduction”. This will also make it possible to make a real-time 
diagnosis of meters and equipment close to the consumer, sending alarms, executing 
“self-healing” systems, etc.. Improving customer engagement is among the motivations 
of DR, because it helps utilities interact with the customers energy needs even during 
power outage. Dynamic pricing is also involved by DR; consumption monitoring avoid 
usage in peak time, so customers can check prices in real time and adapt their usage 
Fig. 7
Cloud computing components. Cloud computing relies on several concepts that are required for Big 
Data management in smart grid


Page 16 of 19
Daki 
et al. J Big Data (2017) 4:13 
according to the electrical bills [
12
]. All of which is only possible using customer data 
analytics techniques as shown in Fig. 
8
.

Download 1,86 Mb.

Do'stlaringiz bilan baham:
1   ...   12   13   14   15   16   17   18   19   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish