Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet48/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   44   45   46   47   48   49   50   51   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 2-22.  Getting the anomaly scores from the trained isolation forest model 

and plotting a histogram

Figure 2-23.  A histogram plotting the average path lengths for the data points.  

It helps you determine what is an anomaly by using the shortest set of path lengths

since that indicates that the model was able to easily isolate those points

Chapter 2   traditional Methods of anoMaly deteCtion




49

A quick note: plt.show() is not necessary on Jupyter if you have %matplotlib inline, 

but if you are using anything else, this should open up a new window with the graph.

Let’s calculate the 



AUC to see how well the model did. Looking at the graph, there 

appears to be a few anomalous data with average path of less than -0.15. You expect 

there to be a few outliers within the normal range of data, so let’s pick something more 

extreme, such as -0.19. Remember that the lesser the path length, the more likely the 

data is to be anomalous, hence why there’s a curve that increases drastically as the graph 

goes right. Run the code in Figure 

2-24

.

You should see something like Figure 



2-25

.

That’s an impressive score! But could it be the result of overfitting? Let’s get the 



anomaly scores of the test set to find out.

Run the code in Figure 

2-26

.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   44   45   46   47   48   49   50   51   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish