Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet35/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   31   32   33   34   35   36   37   38   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

training data set (the data used to train the model so that it can learn to classify 

anomalies and normal data). This is because in the real world, there is the factor of 

unpredictability that even has humans confused at times. The world would be a simpler 

place if data is black and white, so to speak, but more often than not, there is a huge 



Figure 2-3.  ROC curve with AUC = 1.0

Chapter 2   traditional Methods of anoMaly deteCtion




31

gray area (are we sure that point is X and not Y? Is this really an anomaly or just a really 

weird case of a normal point?). For deep learning models, it is important that they keep 

achieving high AUC scores when exposed to new data that includes plenty of variation. 

Basically, it’s a reasonable assumption to expect a slight drop in performance when 

exposing your model to new data outside of your training set.

The goal with training models is to avoid overfitting and to keep the AUC as high as 

possible. If the AUC turns out to be 0.99999 even after being exposed to an extremely 

large sample of new data that includes a lot of variety, that means the model is basically 

about as ideal of a model we can get and has far surpassed human performance, which 

is impossible for the time being.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   31   32   33   34   35   36   37   38   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish