Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet33/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   29   30   31   32   33   34   35   36   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

true positive rate (TPR) = recall = sensitivity. The same as recall, the TPR  

tells us how many of the data points that are actually true were predicted as true by  

the model.

 

The false positive rate FPR



specificity

(

)



=

(

)



=

+

1–



FP

FP TN

 

The FPR tells us how many of the data points that are actually false were predicted to 



be positive by the model. The formula is similar to recall, but instead of the proportion 

of true positives to all of the true data points, it’s the proportion of false positives to all of 

the false data points.

 

Specificity



FPR

=

=



+

1–

TN



TN FP

 

Specificity is very similar to recall in that it tells us how many of the data points that 



are actually false were predicted as false by the model.

We can use the TPR and the FPR to form a graph known as a 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   29   30   31   32   33   34   35   36   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish