Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet81/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   77   78   79   80   81   82   83   84   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Max 

pooling is where the input data is scanned by a filter, which in this case is a 2x2 filter, and 

the maximum value in the 2x2 region of the image is chosen to be the value in the new 

n-dimensional image. If the 

stride length is not given, by default Keras chooses the pool 

size. The stride length is how far the filter should shift, and it plays a role in determining 

the feature map size. In this case, since the stride length is 2 and the pooling filter size is 

also 2x2, the dimensions of the input data are reduced in half.

Assume that the 4x4 image in Figure 

3-40


 is the input to a max pooling layer with 

pool size of 2x2.



Figure 3-39.  Once the filter reaches this value here, the convolution operation 

ceases, outputting a feature map to the next layer

Chapter 3   IntroduCtIon to deep LearnIng




101

Since the pool size is 2x2 and the stride length is also 2 in this case (no parameter 

was provided for stride length), the pooling layer happens to split the entire image into 

regions of 2x2 pooling filters.

If the stride length was 1, then you would have a situation similar to the convolution 

example you saw earlier, and the dimensions of the feature map would be 4-2+1 = 3x3. 

This process of pooling can also be referred to as 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   77   78   79   80   81   82   83   84   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish