Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet79/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   75   76   77   78   79   80   81   82   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

convolution layer filters through the data and 

multiplies each of the values element-wise by the weights in the filter and sums them 

up to generate one value. In this case, it’s a 3x3 filter that slides over each of the pixels to 

generate a smaller layer called an 



activation map or feature map. This feature map then 

has another filter applied to it in the second convolutional layer to generate another

smaller feature map. The weights that are optimized during backpropagation are found 

in the filter. To get a better idea of this, let’s look at some examples of how this works.

Assume a 5x5 pixel picture like Figure 

3-34


.

Assume also that your kernel size (filter dimensions) is 2x2. Figure 

3-35

 shows how 



the convolutions would go.

Figure 3-34.  A 5x5 pixel picture, with 0 representing black pixels and 1 

representing white pixels

Chapter 3   IntroduCtIon to deep LearnIng




96

To begin with, you have a random set of weights for the 2x2 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   75   76   77   78   79   80   81   82   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish