Beginning Anomaly Detection Using


Keras, with a TensorFlow backend, and PyTorch



Download 26,57 Mb.
Pdf ko'rish
bet71/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   67   68   69   70   71   72   73   74   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Keras, with a TensorFlow backend, and PyTorch. These 

frameworks help you create customized deep learning models in just a few dozen lines 

of code as opposed to creating them entirely from scratch.

Keras is a high-level framework that lets you quickly create, train, and test powerful 

deep learning models while abstracting all of the little details away for you. 



PyTorch 

is more of a low-level framework, but it doesn’t carry with it the amount of syntax that 



TensorFlow (a much more popular deep learning framework) does. Compared to Keras, 

however, there are still more things that you must define since it’s no longer abstracted 

away for you.

Using PyTorch over TensorFlow or vice-versa is more of a personal preference, but 

PyTorch is easier to pick up. Both offer very similar functionality, and if there are any 

functions that TensorFlow has that PyTorch doesn’t, you can still implement them using 

the PyTorch API.

Another note to make is that TensorFlow has integrated Keras into its API, so if you 

want to use TensorFlow in the future, you can still build your models using tf.keras.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   67   68   69   70   71   72   73   74   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish