Beginning Anomaly Detection Using


The Three Styles of Anomaly Detection



Download 26,57 Mb.
Pdf ko'rish
bet23/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   19   20   21   22   23   24   25   26   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 The Three Styles of Anomaly Detection

It is important to note that there are three overarching “styles” of anomaly detection. 

They are

• 

Supervised anomaly detection

• 

Semi-supervised anomaly detection

• 

Unsupervised anomaly detection



Supervised anomaly detection is a technique in which the training data has labels 

for both anomalies and for normal data points. Basically, you tell the model during the 

training process if a data point is an anomaly or not. Unfortunately, this isn’t the most 

practical method of training, especially because the entire data set needs to be processed 

and each data point needs to be labeled. Since supervised anomaly detection is basically 

a type of binary classification task, meaning the job of the model is to categorize data 

under one of two labels, any classification model can be used for the task, though not 

every model can attain a high level of performance. An example of this can be seen in 

Chapter 

7

 with the temporal convolutional network.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   19   20   21   22   23   24   25   26   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish