Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet226/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   222   223   224   225   226   227   228   229   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

activity_regularizer: A regularizer function applied to the output of 

the layer.

• 

kernel_constraint: A constraint function applied to the weights. For 

more information, check out the 

Constraints section.

• 

bias_constraint: A constraint function applied to the bias.

Appendix A   intro to KerAs



336

 Conv2D

keras.layers.Conv1D()

Check out Chapter 

3

 for a detailed explanation on how the 2D convolutional layer 



works.

This layer is a two-dimensional convolutional layer. It basically passes a 2D filter over 

the input and multiplies the values element-wise to create the output feature map.

These are the parameters that the function takes:

• 

filters: An integer value that determines the dimensionality of the 

output space. In other words, this is also the number of filters in the 

convolution.

• 

kernel_size: An integer (or tuple/list of two integers) that specifies 

the height and width of the filter/kernel that is used in the 2D 

convolution.

• 

strides: An integer (or tuple/list of two integers, one for height and 

one for width, respectively) that tells the layer how many data entries 

to shift by after one element-wise multiplication of the filter and the 

input data. Note: A stride value != 1 isn’t compatible if the dilation_

rate != 1.

• 

padding: ‘valid’ or ‘same’. ‘valid’ doesn’t zero pad the output. ‘same’ 

zero pads the output so that it’s the same length as the input.

• 

data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last.

• 

dilation_rate: An integer (or tuple/list of a two integers) serves as the 

dilation rate for this dilated convolutional layer. For an explanation of 

how this works, refer to Chapter 

7

.



• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   222   223   224   225   226   227   228   229   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish