Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet206/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   202   203   204   205   206   207   208   209   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 8-18.  Historical sales figures of a product

Chapter 8   praCtiCal Use Cases of anomaly DeteCtion




317

•  Investigating the results and feedback analysis as it effects the 

business

•  Operationalizing the model used in the day-to-day activity of the 

business

In particular, we are very interested in how the models are built and in what type 

of models we should be using. The type of anomaly detection algorithm used affects 

pretty much everything that we are trying to get out of this anomaly detection strategy. 

This in turn depends on the type of data available, as well as whether the data is already 

labeled or identified. One of the things that will affect the decision to figure out what 

type of anomaly detection will work best for the specific use case is whether it is a 

point anomaly, contextual anomaly, or a collective anomaly. We are also interested in 

looking at whether the data is an instantaneous snapshot at some point in time or if it 

is continuously evolving or ever-changing, real-time, time series data. Also important 

is whether the specific features or attributes of the data are categorical or numerical, 

nominal, ordinal, binary, discrete, or continuous. It is also very important to know if the 

data is being labeled already or if some sort of a hint is provided as to what this data is, 

since it could steer us in the direction of supervised, semi-supervised, or unsupervised 

algorithms.

While the technologies and algorithms are available to be used, there are several key 

challenges to implementing an anomaly detection approach based on deep learning:

•  It’s hard to integrate AI into existing processes and systems.

•  The technologies and the expertise needed are expensive.

•  Leadership needs to be educated on what AI can and cannot do.

•  AI algorithms are not natively intelligent; rather, they learn by 

analyzing “good” data.

•  There is a need for change in “culture,” especially in large companies.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   202   203   204   205   206   207   208   209   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish