Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet20/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   16   17   18   19   20   21   22   23   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Anomaly detection is the process in 

which an advanced algorithm identifies certain data or data patterns to be anomalous. 

Heavily related to anomaly detection are the tasks of outlier detection, noise removal, 

and novelty detection. In this book, you will explore all of these options as they are all 

basically anomaly detection methods.

 Outlier  Detection

Outlier detection is a technique that aims to detect anomalous outliers within a given 

data set. As discussed, three methods that can be applied to this situation are to train 

only on normal data to identify anomalies by a high reconstruction error, to model a 

probability distribution in which anomalies are labeled based on their association with 

really low probabilities, or to train a model to recognize anomalies by teaching it what an 

anomaly looks like and what a normal point looks like.

Regarding the high reconstruction error, think of the model as having trouble 

labeling an anomaly because it is odd compared to all the normal data points that it has 

seen. Just like how the black swan is really different based on your initial assumption that 

all swans are white, the model perceives this anomalous data point as “different” and has 

a harder time interpreting it.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   16   17   18   19   20   21   22   23   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish