Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet101/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   97   98   99   100   101   102   103   104   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 4-21b.  Code to show the precision and recall for threshold = 1.0

Figure 4-21c.  Code to show the precision and recall for threshold = 5.0

Figure 4-21d.  Code to show the precision and recall for threshold = 15.0

If you observe the four classification reports, you can see that the precision and recall 

columns are not good (note the very low values for precision and recall in row 0 and row 1)  

for threshold = 1 or 5. They look better for threshold = 10 or 15. In fact, threshold = 10 

looks pretty good with a good recall and also higher precision than for threshold = 1 or 5.

Threshold = 5.0

Threshold = 15.0

Chapter 4   autoenCoders




139

Picking a threshold is a matter of experimentation in this and other models and 

changes as per the data being trained on.

Compute the AUC (Area Under the Curve, 0.0 to 1.0) which comes up as 0.86. 

Figure 

4-21e


 shows the code to show AUC.

Figure 4-21e.  Code to show AUC

You can now visualize the confusion matrix to see how well you did with the model. 

Figure 

4-22


 shows the confusion matrix.

Figure 4-22.  Confusion matrix

Now, using the predictions of the labels (normal or anomaly), you can plot the 

anomalies in comparison to the normal data points. Figure 

4-23


 shows the anomalies 

based on the threshold.

Chapter 4   autoenCoders



140


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   97   98   99   100   101   102   103   104   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish