Be a part of international confrence



Download 38,51 Mb.
Pdf ko'rish
bet45/310
Sana30.04.2022
Hajmi38,51 Mb.
#600331
1   ...   41   42   43   44   45   46   47   48   ...   310
Bog'liq
Proceedings of Singapore Conference

www.econferenceglobe.com 
39
By the trajectories of the differential inclusion (1) we mean every absolutely 
continuous 
n-vector function 
)
(
t
x
x


]
,
[
1
0
t
t
T
t


, satisfying almost everywhere on 
]
,
[
1
0
t
t
T

the relation 
))
(
,
(
)
(
t
x
t
F
dt
t
dx


The differential inclusion (1) is called controllable from the initial state 
0
x
to the final 
state 
1
x
("pointwise" controllable) if there exists a trajectory 
)
(
t
x
defined on some segment 
]
,
[
1
0
t
t
T

, such that 
0
0
)
(
x
t
x


1
1
)
(
x
t
x


Definition 1. The sets of zero-controllability of the differential inclusion are called the set of 
all those points 
n
R
x

0
from which the origin of coordinates is achievable along the 
trajectories (
0
0
)
(
x
t
x


0
)
(
1

t
x
) of the differential inclusion (1). 
Let be a mobile, i.e. time-dependent terminal set 
0
),
(
t
t
t
M
M


. By analogy with the 
concept of a zero-controllability set, we can introduce the concept of 

M
controllability for the 
case of a mobile terminal set as follows. 
Definition 2. Point 
)
(
,
0
0
0
t
M
x
R
x
n


, we call the point of 

M
controllability of the 
differential inclusion (1) for a given mobile terminal set 
)
(
t
M
M

, if there exist a absolutely 
continuous trajectory 
)
(
t
x
defined on some segment 
]
,
[
1
0
t
t
T

such that 
,
)
(
0
0
x
t
x

)
(
)
(
1
1
t
M
t
x


We denote by 
)
,
(
F
M
W
the set of all points of 

M
controllability of the differential 
inclusion (1). The main goal of this paper is to study such properties of the set 
)
,
(
F
M
W
that 
clarify its topological structure. 
Let 
)
,
,
,
(
0
1
0
F
x
t
t
X
T
be the set of reachability of the differential inclusion (1) from the 
starting point 
n
R
x

0
at time 
0
1
t
t

, i.e. the set of possible points 
n
R
x

1
for which there 
exist trajectories
)
(
t
x
x

,
]
,
[
1
0
t
t
T
t


, such that 
0
0
)
(
x
t
x

and 
1
1
)
(
x
t
x

. From definition 2, it 
is clear that point 
n
R
x

0
is the point of 

M
controllability of the differential inclusion (1) if 
and only if there exists 
0
1
t
t

such that 



)
(
)
,
,
,
(
1
0
1
0
t
M
F
x
t
t
X
T
, where 
)
(
],
,
[
0
0
1
0
t
M
x
t
t
T



So, it is clear that, in order to study the properties of the controllability set of the 
differential inclusion (1), it is necessary to study the structure of the set 







)
(
)
,
,
,
(
:
)
,
,
,
(
1
1
0
1
0
t
M
F
t
t
X
R
F
M
t
t
K
T
n


at 
0
1
t
t

, taking into account properties 
)
(
t
M
M

and 
)
,
(
x
t
F
F


From the definition of sets 
)
,
(
F
M
W
and 
)
,
,
,
(
1
0
F
M
t
t
K
, the validity of the following 
equality easily follows
)
(
\
))
,
,
,
(
(
)
,
(
0
1
0
0
1
t
M
F
M
t
t
K
F
M
W
t
t



.
(2) 
Obviously, 
if 
)
,
(
)
,
(
2
1
x
t
F
x
t
F


then 
)
,
,
,
(
)
,
,
,
(
2
1
0
1
1
0
F
t
t
X
F
t
t
X
T
T



and 
at 
0
2
1
),
(
)
(
t
t
t
M
t
M



from 
the 
relation 



)
(
)
,
,
,
(
1
1
1
1
0
t
M
F
t
t
X
T

follows 



)
(
)
,
,
,
(
1
2
2
1
0
t
M
F
t
t
X
T

. Therefore,
)
,
,
,
(
)
,
,
,
(
2
2
1
0
1
1
1
0
F
M
t
t
K
F
M
t
t
K

,
)
,
(
)
,
(
2
2
1
1
F
M
W
F
M
W


Hence, in particular, we get that if there are maps 
),
(
:
,
:
1
1
n
nxn
R
R
B
R
R
A



such that 
n
R
R
x
t
x
t
F
t
B
x
t
A





1
)
,
(
)
,
(
)
(
)
(
, then to check the property of 

M
controllability of the 


5th Global Congress on Contemporary Sciences & Advancements 
Hosted from Singapore 
10th May 2021 
www.econferenceglobe.com 
40
differential inclusion (1), it is sufficient to check the 

M
controllability of the differential 
inclusion 
)
(
)
(
t
B
x
t
A
x



. (3) 
3. Main results.
Let us study the structural properties of the set of 

M
controllability of the differential 
inclusion (3). According to the accepted notation 
)
,
,
(
B
A
M
W
there is a set of all points of 

M
controllability of the differential inclusion (3) for a given terminal set 
0
),
(
t
t
t
M
M



Further, denoting 
)
,
,
,
,
(
1
0
B
A
t
t
X
T

the set of reachability of the differential inclusion (3), 
)
,
,
,
,
(
1
0
B
A
M
t
t
K
the set is defined similarly to the set 
)
,
,
,
(
1
0
F
M
t
t
K
, i.e. 







)
(
)
,
,
,
,
(
:
)
,
,
,
,
(
1
1
0
1
0
t
M
B
A
t
t
X
R
B
A
M
t
t
K
T
n



Since, according to (2) 
)
(
\
))
,
,
,
,
(
(
)
,
,
(
0
1
0
0
1
t
M
B
A
M
t
t
K
B
A
M
W
t
t




then the structural properties of set 
)
,
,
(
B
A
M
W
are expressed in terms of similar properties of 
sets of the form 
)
,
,
,
,
(
1
0
B
A
M
t
t
K

In the future, we will assume that the elements of the matrix 
)
(
t
A
are measurable on 
any 
]
,
[
]
,
[
0
1
0



t
t
t
T
and 
)
(
||
)
(
||
t
a
t
A

, where 
)
(
)
(
1
T
L
a


, and the multi-valued map 
)
(
)
(
n
R
t
B
t



is measurable on any segment 
]
,
[
]
,
[
0
1
0



t
t
t
T
and 
)
(
||
)
(
||
t
b
t
B

, where 
)
(
)
(
1
T
L
b



It is well known [8] that for every integrable function 
n
R
T
b

:
, the absolutely 
continuous solution of equation 





)
(
,
),
(
)
(
0
t
x
T
t
t
b
x
t
A
x

is represented by the Cauchy 
formulas




t
t
A
A
T
t
d
b
t
Ф
t
t
Ф
t
x
0
,
)
(
)
,
(
)
,
(
)
(
0




.
(4) 
where 
)
,
(

t
Ф
A
is the fundamental matrix of solutions to equation 
.
,
)
(
T
t
x
t
A
x



The relation of 



)
(
)
,
,
,
,
(
1
1
0
t
M
B
A
t
t
X
T

is equal to the inclusion of 
)
(
)
,
,
,
,
(
0
1
1
0
t
M
B
A
t
t
X
T



. Therefore, 


)
(
)
,
,
,
,
(
0
:
)
,
,
,
,
(
1
1
0
1
0
t
M
B
A
t
t
X
R
B
A
t
t
K
T
n








Now, using the last equality and formula (4), we can get the following result. 
Theorem 1. The set 
)
,
,
,
,
(
1
0
B
A
M
t
t
K
is represented by the formula




1
0
)
(
)
,
(
)
(
)
,
(
)
,
,
,
,
(
1
1
0
0
1
0
t
t
A
A
t
M
t
t
Ф
dt
t
B
t
t
Ф
B
A
M
t
t
K
(5) 
Corollary 1. If 1
)
(
1
t
M
is a convex compact, then 
)
,
,
,
,
(
1
0
B
A
M
t
t
K
is also a convex compact of 
n
R
. If 
)
(
1
t
M
and 
)
(
t
convB
are strictly convex at 
]
,
[
1
0
t
t
T
t


, then 
)
,
,
,
,
(
1
0
B
A
M
t
t
K
is strictly 
convex. 
Let's say: 

)
,
,
(
1
0
B
A
t
K
 
)
,
,
0
,
,
(
1
0
B
A
t
t
K
. Then it is clear from formula (5) that 



1
0
)
(
)
,
(
)
,
,
,
(
0
1
0
0
t
t
A
dt
t
B
t
t
Ф
B
A
t
t
K
.
(6) 


5th Global Congress on Contemporary Sciences & Advancements 
Hosted from Singapore 
10th May 2021 

Download 38,51 Mb.

Do'stlaringiz bilan baham:
1   ...   41   42   43   44   45   46   47   48   ...   310




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish