B tech. Discrete mathematics (I. T & Comp. Science Engg.) Syllabus



Download 472,94 Kb.
bet49/50
Sana11.01.2022
Hajmi472,94 Kb.
#343705
1   ...   42   43   44   45   46   47   48   49   50
Bog'liq
Independent.deskret

Important Terminology :

Let us choose an integer n  m and one-to-one function

e :Bm  Bn .


  1. Encoding Function :

The function e is called an (m, n) encoding function. It means that every word in Bm as a word in Bn.

  1. Code word :

If bBm then e(b) is called the code word

  1. Weight :

For x Bn the number of 1’s in x is called the weight of x and is

denoted by x .

e.g. i) x 10011B5 w x 3

ii) x 001B3 w x

  1. x  y  Let x, yBn , then x  y is a sequence of length n that

has 1’s in those positions x & y differ and has O’s in those positions x & y are the same. i.e. The operation + is defined as 0 + 0 = 0 0 + 1

= 1 1 + 1

= 0 1 + 0 = 1

e.g. if x, yB5

x  00101, y  10110

x  y  10011



w (x  y)  3


  1. Hamming Distance :

Let x, yBm. The Hamming Distance  x, y between x and y is the weight of x  y . It is denoted by x  y . e.g. Hamming distance between x & y can be calculated as follows : if x = 110110, y = 000101 x  y = 110011 so x  y = 4.


  1. Minimum distance :

Let x, yBn.then minimum distance = min d x, y / x, yBn.

Let x1, x2   xn are the code words, let any xi, i  1   n is a transmitted word and y be the corresponding received word. Then y  xk if dxk, yis the minimum distane for k = 1, 2, --- n. This criteria is known as minimum distance criteria.


  1. Detection of errors :

Let e : Bm Bn m nis an encoding function then if minimum distane of e is ( k + 1) then it can detect k or fewer errors.


  1. Correction of errors :

Let e : Bm Bn m nis an encoding function then if minimum distance of e is (2k + 1) then it can correct k or fewer errors.
Weight of a code word : It is the number of 1’s present in the given code word.
Hamming distance between two code words : Let x x1 x2 ... xm and y y1 y2 ... ym be two code words. The Hamming distance between them, x, y , is the number of occurrences such that xi yi for i  1, m .

Example 1 : Define Hamming distance. Find the Hamming distance between the codes.

(a) x  010000, y  000101 (b) x  001100, y  010110

Solution : Hamming distance :

(a) x, y x y 010000 000101 010101 3

(b) x, y

x y

 001100  010110

 011010  3


Example 2 : Let d be the 4, 3 decoding function defined by

d : B4 B3 . If y y1 y2 ... ym1 , d y y1 y2 ... ym . Determine d y for the word y is B4 .

(a) y  0110 (b) y  1011


Solution : (a) d y 011 (b) d y 101

Example 3 : Let d : B6 B2 be a decoding function defined by for

y y1 y2 ... y6 . Then d y z1 z2 .

where


zi 1 if y1, yi2 , yi4has at least two 1’s.

0 if y1, yi2 , yi4has less than two 1’s. Determine d yfor the word y in B6 .

(a) y  111011 (b) y  010100
Solution : (a) d y  11 (b) d y  01

Example 4 : The following encoding function f : Bm Bm1 is called the parity m, m 1check code. If b b1 b2 ... bm Bm , define

e b b1 b2 ... bm bm1


where

bm1  0 if

= 1 if
b is even. b is odd.

Find ebif (a) b 01010 (b) b 01110


Solution : (a) eb 010100 (b) eb 011101

Example 5 : Let e : B2 B6 is an (2,6) encoding function defined as e(00) = 000000, e(01) = 011101

e(10) = 001110, e(11) = 111111


  1. Find minimum distance.

  2. How many errors can e detect?

  3. How many errors can e correts?

Solution : Let x0, x1, x2, x3 B6 where x0  000000, x1  011101, x2  001110, x3  111111



w x0 x1 w 011101 4 w x0 x2 w 001110 3 w x0 x3 w 111111 6 w x1 x2 w 010011 3 w x1 x3 w 100010 w x2 x3 w 110001 3 Minimum distance = e = 2

  1. Minimum distance = 2

An encoding function e can detect k or fewer errors if the minimum distance is k + 1. k  1 2k  1

The function can detect 1 or fewer (i.e. 0) error.




  1. e can correct k or fewer error if minimum distance is 2k + 1.

2k + 1 = 2

k = 1

2


e can correct 1

2

or less than 1 i.e. 0 errors.



2


GROUP CODE :
An m, n encoding function e : Bm Bn is called a group code if range of e is a subgroup of Bn. i.e. (Ran (e), ) is a group.
Since Ran (e) CBn and if (Ran (e),  ) is a group then Ran(e) is a

subgroup of Bn. If an encoding function e : Bm Bn (n < n) is a group code, then the minimum distance of e is the minimum weight of a nonzero codeword.

.



DECODING AND ERROR CORRECTION :



Consider an m, nencoding function e : Bm Bn , we require an (n,m) decoding function associate with e as d : Bn Bm .

The method to determine a decoding function d is called maximum likelihood technique.


Since Bm  2m .
Let xk Bm be a codeword, k = 1, 2, ---m and the received word is y then. Min 1 k  2m d xk, y  d xi, y for same i then xi is a codeword which is closest to y. If minimum distance is not unique then select on priority

MAXIMUM LIKELIHOOD TECHNIQUE :



Given an m, nencoding function e : Bm Bn , we often need to determine an n, m decoding function d : Bn Bm associated with e. We now discuss a method, called the maximum likelihood techniques, for determining a decoding function d for a given e. Since Bm has 2m

elements, there are 2m

a fixed order.

code words in Bn . We first list the code words in

1 2   
2m

x , x , ..., x


If the received word is x1 , we compute xi , x1 for 1  i  2m and choose the first code word, say it is xs , such that

min


1i2m

xi , x1  xs , x1

That is, xs is a code word that is closest to x1 , and the first in the list. If xs e b , we define the maximum likelihood decoding function d associated with e by



d xt b

Observe that d depends on the particular order in which the code words in e Bn are listed. If the code words are listed in a different

order, we may obtain, a different likelihood decoding function d associated with e.
Theorem : Suppose that e is an m, nencoding function and d is a maximum likelihood decoding function associated with e. Then e, d  can correct k or fewer errors if and only if the minimum distance of e is at least 2k  1 .
1 1 0

0 1 1

 



Download 472,94 Kb.

Do'stlaringiz bilan baham:
1   ...   42   43   44   45   46   47   48   49   50




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish