Аylаnа vа uning tеnglаmаsi



Download 135,5 Kb.
Sana18.02.2022
Hajmi135,5 Kb.
#452049
Bog'liq
Ketma ketliklarning aylana uzunligi


Ketma ketliklarning aylana uzunligi


T а` r i f. Mаrkаz dеb аtаlаuvchi nuqtаdаn bаrоbаr uzоqlikdа yotuvchi nuqtаlаrning to`plаmigа аylаnа dеyilаdi.

To`g`ri burchаkli kооrdinаtаlаr sistеmаsidа аylаnаning rаdiusi R vа mаrkаzi А (а ; b) nuqtаdа bo`lsin. N (х ; y) аylаnаdаgi iхtiyoriy nuqtа. Аylаnаning tа`rifigа ko`rа: АN=R.


Ikki nuqtа оrаsidаgi mаsоfаni tоpish fоrmulаsigа аsоsаn:

T еnglikning ikkitа tоmоnini kvаdrаtgа ko`tаrib, АN=R ekаnligini e`tibоrgа оlsаk kеlib chiqаdi. (1-chizmа)





1 – c h i z m a.

aylananing ixtiyoriy nuqtasi bo`lgani uchun (1.1) tenglama aylananing markazi nuqtada bo`lgan kanonik (sodda) tenglamasi deyiladi.
Aylananing tenglamasi o`zgaruvchi koordinatalarga nisbatan ikkinchi darajalidir. Xususiy holda, agar aylananing markazi koordinatalar boshida bo`lsa, uning tenglamasi: (1.2)

(1.1) tenglamada qavslarni ochib va ba`zi bir ayniy almashtirishlarni bajarib, aylananing quyidagi tenglamasini hosil qilamiz:
(1.3)

Bu tenglamani 2–tartibli egri chiziqning umumiy tenglamasi (1) bilan solishtirganda aylana tenglamasi uchun quyidagi ikkita shart bajarilganini ko`rish mumkin: 1) , koordinatalar ko`paytmasi bo`lgan li had qatnashmayapti; 2) va lar oldidagi koeffisientlar o`zaro teng, ya`ni ; . Bu holda (1) tenglama (1.4) ko`rinishda bo`lib aylanani tasvirlaydi.


Agar ; ; (1.5) bo`lsa, (1.4) tenglama (1.2) tenglamaga aylanadi va, aksincha (1.1) tenglamadan (1.5) formulalar yordamida (1.4) tenglamaga o`tish mumkin.


Mumkin bo`lgan uchta holni ko`ramiz:
1) . Bu holda (1.6) tenglama va demak, unga teng kuchli bo`lgan (1.4) tenglama ham markazi nuqtada bo`lgan, radiusi dan iborat aylanani aniqlaydi.
2) . Bu holda (1.6) tenglama ko`rinishga ega bo`ladi. Ushbu tenglamani va demak, unga teng kuchli bo`lgan (1.4) tenglamani haqiqiy yagona nuqtani tasvirlaydi.
3) bo`lsa, (1.6) yoki (1.4) tenglamaning radiusi mavhum bo`lib, bu holda haqiqatda aylana mavjud bo`lmasa-da, umumiylik nuqtai nazaridan mavhum aylana deyiladi.


T a` r i f. Aylana bilan umumiy bitta nuqtaga ega bo`lgan to`g`ri chiziq aylanaga o`tkazilgan urinma deyiladi. Agar aylananing biror nuqtasining koordinatasi bo`lsa, u holda bu nuqtadan aylanaga o`tkazilgan urinmaning tenglamasi (1.2) tenglama uchun (1.7), yoki (1.1) tenglama uchun (1.8). ko`rinishda yoziladi.


1 – m i s o l. Markazi nuqtada va radiusi 3 ga teng bo`lgan aylananing tenglamasini tuzing.


Y e c h i s h . ; , . Bularni (1.1) formulaga qo`yamiz:


J a v o b:


2 – m i s o l. Markazi nuqtada bo`lgan va nuqtadan o`tadigan aylana tenglamasini tuzing.


Y e c h i s h . Radiusni aylana markazidan uning birorta berilgan nuqtasigacha bo`lgan masofa sifatida topamiz. Ikki nuqta orasidagi masofani topish formulasidan foydalansak:


J a v o b:


3 – m i s o l. va nuqtalardan va markazi absissalar o`qida bo`lgan aylananing tenglamasini tuzing.
Y e c h i s h . Aylananing markazi bo`lsin. U holda ikki nuqta orasidagi masofani topish formulasiga ko`ra . Bu ifodani soddalashtirib, quyidagini topamiz: ;
. Aylananing tenglamasi: .


4 – m i s o l. Aylananing radiusini va markazining koordinatalarini toping:


Y e c h i s h . Berilgan tenglamani ushbu ko`rinishda yozamiz:

va ikki hadlarni to`la kvadratlargacha to`ldirib, ushbuni hosil qilamiz: yoki , bundan ; , .


ADABIYOTLAR:


1. T.Jo`raev va boshqalar. “Oliy matematika asoslari”. 1–qism, “O`zbekiston”, T. 1995
2. T.Shodiev. “Analitik geometriyadan qo`llanma”, “O`qituvhi”, T. 1973
3. B.A.Abdalimov. “Oliy matematika”, “O`qituvhi”, T. 1994
4. V.E.Shneyder va boshqalar. “Oliy matematika qisqa kursi” 1–qism, “O`qituvchi”, T. 1985
5. Fizika, matematika va informatika (ilmiy – uslubiy jurnal),
4 va №6, 2004
6. S.P.Vinogradov. Oliy matematika “O`qituvchi”, T. 1964
7. www.ziyonet.uz
Download 135,5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish