Arthimatic progression


The sum of an arithmetic series



Download 184,23 Kb.
bet6/6
Sana12.01.2022
Hajmi184,23 Kb.
#353380
1   2   3   4   5   6
Bog'liq
dilya inglis tili prezentatsiya

The sum of an arithmetic series

  • Let us write the series down again, but this time we shall write it down with the terms in reverse order.
  • We get Sn = ℓ + (ℓ − d) + (ℓ − 2d) + . . . + (a + 2d) + (a + d) + a
  • 2Sn = (a + ℓ) + (a + ℓ) + (a + ℓ) + . . . + (a + ℓ) + (a + ℓ) + (a + ℓ),
  • 2Sn = n(a + ℓ)

The sum of an arithmetic series

  • Sn = ½ n(a + ℓ).
  • ℓ = a + (n − 1)d ,
  • Sn = ½ n(a + ℓ)
  • Sn = ½ n(a + a + (n − 1)d)
  • Sn= ½ n(2a + (n − 1)d).

The sum of an arithmetic series

  • Example -1: Find the sum of the first 50 terms of the sequence 1, 3, 5, 7, 9, . . . .
  • Solution : This is an arithmetic progression,

    a = 1 , d = 2 , n = 50 .

    Sn = ½ n(2a + (n − 1)d)

    S50 = ½ × 50 × (2 × 1 + (50 − 1) × 2)

    = 25 × (2 + 49 × 2)

    = 25 × (2 + 98) = 2500

The sum of an arithmetic series

  • Example-2: Find the sum of the series 1 + 3·5 + 6 + 8·5 + . . . + 101 .
  • Solution : Given a=1 , d= 3.5 - 1 = 2.5 and ℓ=101

    we know ℓ = a + (n − 1)d

    101 = 1 + (n − 1) × 2·5 .

    100 = (n − 1) × 2·5

    40 = n − 1

    n = 41

    So, Sn = ½ n(a+ ℓ)= ½ ×41(1+101)=2091

Example 4: Find number of terms of


A.P. 100, 105, 110, 115,,………500

Solution : First term is a = 100 , an = 500

Common difference is d = 105 -100 = 5

nth term is

an = a + (n-1)d

500 = 100 + (n-1)5

500 - 100 = 5(n – 1)

400 = 5(n – 1)

5(n – 1) = 400

5(n – 1) = 400 n – 1 = 400/5 n - 1 = 80

n = 80 + 1

n = 81

Hence the no. of term is 81.

MIND MAP


sn=n(a+l)

2

If a, b, c, are in AP,



2

b is arithmetic mean

b = a + c

Arithmetic Progression

When first term of common differnce is given :

When first & last terms are given:

From beginning an = a+(n–1)d Here

d



co

m

on



a – first term

di

2



or sn =

n(n+l)

3

n = 30



i.e., n–1 = 87 = 29

2-digit numbers divisible by 3 12, 15, 18, ... 99

a = 12, d = 3, an = 99

an = a + (n–1)d 99 = 12 + (n–1)3

sn=n(a+l) =n(1+n)

2 2


Let sn = 1 + 2 + 3 + ... n

a = 1, last term l = n

Sum of first n positive integers

How many 2-digit numbers are divisible by 3?

Fixed number in arithmetic progression which provides the to and fro terms by adding/ subtracting from the present number.

Can be positive or negative.

a, a+d, a+2d, a+3d, ... a+(n –1) d

List of numbers in which each term is obtained by adding a fixed number

to the preceding term except the first term. Fixed number is called common difference.

er

h Te



𝑛

𝑆𝑛 = 2 {2𝑎 + (𝑛 − 1)𝑑}



𝑛

𝑆𝑛 = 2 (𝑎 + 𝑎𝑛)



a- First term d- common difference
Download 184,23 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish