Arifmetik amallarni o’rganishda didaktik materiallar
Bu xossalarni va tegishli hisoblash usullarini ochib berishdan avval tayyorgarlik ishini bajarish kerak, natijada o‘quvchilar sonlar yig‘indisi va sonlar ayirmasi kabi matematik ifodalarni o‘zlashtiradi, qo‘sh tengliklar, bir va ikki amalli ifodalarni qavslar yordamida yozishni o‘rganadi, ikki xonali sonlarni o‘nlik va birlik yordamida yoza oladilar.
«Yig‘indi», «ayirma» tushunchalari bilan 4+3=7, 7-4=3 kabi misollarni yechishda tanishadilar. 10 ichida qo‘shish va ayirishdayoq 5+4=5+2+2=9, 8-3=8-1-2=5 kabi qo‘sh tengliklarni ishlatib, qo‘shish va ayirishning turli ko‘rinishlarini yoza oladilar, qavslar ishlatish yordamida 6+(3+1)=6+4=10 kabi hisoblash usullarini bilib olishadi.
Har bir xossani o‘rganish quyidagi tartibda amalga oshiriladi:
Birinchi bosqichda obyektlar to‘plamlari ustida amallar bajarib, o‘quvchilar xossani ochishadi va uni ifodalashadi.
Ikkinchi bosqichda o‘quvchilar xossani maxsus tanlangan misollarni har xil usullar va xususan, qulay usul bilan yechishga tatbiq qilishadi, shuningdek, masalalarni har xil usullar bilan yechishga ham tatbiq qilishadi.
Uchinchi bosqichda arifmetik amallar xossalari, shuningdek, hisoblash usullarini taqqoslash natijasida bu xossalar va usullar umumlashtirishning yuqoriroq darajasiga ko‘tariladi.
Minglik temasida oldin qo‘shish va ayirishning og‘zaki, keyin yozma usullari o‘rganiladi.
Ming ichida qo‘shish va ayirishning og‘zaki usullarini o‘rganish metodikasi 100 ichida qo‘shish va ayirish metodikasiga o‘xshashlik tomonlari bor.
1000 ichida qo‘shish va ayirishning og‘zaki usullari bir vaqtda va quyidagi tartibda o‘rganiladi.
1. 250+30, 420+300 ko‘rinishdagi qo‘shish va ayirish hollari.
Hisoblash usullari sonni yig‘indiga qo‘shish va yig‘indidan sonni ayirishning tegishli qoidalariga asoslanadi.
250+30=(200+50)+30=200+80=280
250–30=(200+50)-30=200+(50-30)=200+20=220
420+300=(400+200)+300=(400+300)+20=700+20=720
420–300=(400+20)–300=(400-300)+20=100+20=120
840+60, 700-80 ko‘rinishdagi qo‘shish va ayirish hollari.
Qo‘shishning bu usulini qarashda 84+6 ko‘rinishdagi holni eslatish kifoya:
840+60=(800+40)+60=800+(40+60)=800+100=900
700–80 ko‘rinish uchun esa 70–8 ko‘rinishni eslatish bilan birga quyidagi maxsus mashqlarni bajarishni nazarda tutish kerak.
Sonlarni namunadagicha o‘xshash yig‘indi bilan almashtiring:
400+300+100, 600=...., 900=....
437+400, 162+5, 872-700, 568-4.... v.h.
Bu mavzuni o‘rganishda o‘qituvchining asosiy vazifasi o‘quvchilarning arifmetik amallar (qo‘shish va ayirish, ko‘paytirish va bo‘lish) orasidagi o‘zaro bog‘lanishlarni umumlashtirish,yozma hisoblashlarning ongli va puxta ko‘nikmalarini hosil qilishdan iborat.
Ko‘p xonali sonlarni qo‘shish va ayirish bir vaqtda o‘rganilib, nazariy asoslari, yig‘indiga yig‘indini qo‘shish va yig‘indidan yig‘indini ayirish qoidalaridan iborat.
Darslikda qo‘shish va ayirish hollari qiyinligi ortib boradigan tartibda kiritiladi: sekin asta xona birliklaridan o‘tish sonlari orta boradi, nollarni o‘z ichiga olgan sonlar kiritiladi, uzunlik, massa, vaqt va boshqa birliklarda ifodalangan sonlarni qo‘shish va ayirish qaraladi.
Bularning yechimlari ham yig‘indiga sonni qo‘shish va yig‘indidan sonni ayirish qoidalarini qo‘llanishga asoslanadi.
Bunda birdan-bir farq uch xonali sonni xona birliklari yig‘indisi shaklida emas, balki qulay qo‘shiluvchilar yig‘indisi shaklida ifodalashning qulayligidir:
437+200=(400+37)+200=(400+200)+37=637
162+5=(160+2)+5=160+(2+5)=167
872-700=(800+72)-700=(800-700)+72=172
568-4=(560+8)-4=560+(8-4)=564
Do'stlaringiz bilan baham: |