Application of Neural Network and Dual-Energy Radiation-Based Detection Techniques to Measure Scale Layer Thickness in Oil Pipelines Containing a Stratified Regime of Three-Phase Flow



Download 1,92 Mb.
bet3/13
Sana10.04.2023
Hajmi1,92 Mb.
#926432
1   2   3   4   5   6   7   8   9   ...   13
Bog'liq
1 practical work

Figure 2. Cont.
(b)Figure 2. Recorded counts under Photopeaks of (a) 241Am and (b) 133Ba radioisotope in the second detector for different combed oil, gas and water volume fractions at thickness scale of 0 cm.

(a)



(b)
Figure 3. Recorded counts under Photopeaks of (a) 241Am and (b) 133Ba radioisotope in the second detector for different combined oil, gas and water volume fractions at thickness scale of 1.5 cm.


Registered count in detector (per source particle)
Figure 4. Extracted characteristics in terms of scale thickness in constant volume percentage (10% gas, 40% oil, and 50% water).
“Processing-structure-property-performance” is the key mantra in Materials Science and Engineering (MSE)1. The length and time scales of material structures and phenomena vary significantly among these four elements, adding further complexity2. For instance, structural information can range from detailed knowledge of atomic coordinates of elements to the microscale spatial distribution of phases (microstructure), to fragment connectivity (mesoscale), to images and spectra. Establishing linkages between the above components is a challenging task.

Direct property prediction from atomistic configurations


DL methods can be used to establish a structure-property relationship between atomic structure and their properties with high accuracy. Models such as SchNet, crystal graph convolutional neural network (CGCNN), improved crystal graph convolutional neural network (iCGCNN), directional message passing neural network (DimeNet), atomistic line graph neural network (ALIGNN) and materials graph neural network (MEGNet) shown in Table 1 have been used to predict up to 50 properties of crystalline and molecular materials. These property datasets are usually obtained from ab-initio calculations. A schematic of such models shown in Fig. 2. While SchNet, CGCNN, MEGNet are primarily based on atomic distances, iCGCNN, DimeNet, and ALIGNN models capture many-body interactions using GCNN.

Download 1,92 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish