An eulerian-eulerian approach for oil&gas separator design conference Paper



Download 0,89 Mb.
Pdf ko'rish
bet10/12
Sana05.06.2022
Hajmi0,89 Mb.
#639210
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
An Eulerian-Eulerian Approach for OilGas Separator Design-OMC-2017-670

Assumption on the fluid-dynamics
Regarding the fluid-dynamics aspects, our assumptions deal with two aspects: 
1. Phase physical properties: the mixture is composed of three phases (gas, oil and water), 
which are pure and with constant properties; 
2. Flow characteristic: the flow is incompressible and adiabatic with absence of physical 
reactions. Moreover, it can span only the disperse and separate flow regime; 
PRELIMINARY RESULTS 
Before testing the code in a separator, the code has been validated in order to ensure the correctness 
of the algorithm in addressing the previously explained numerical aspects. For this purpose, two 
analytical benchmarks have been used: water faucet problem and phase-redistribution problem. 
Water Faucet problem 
The Water faucet problem [8] represents a standard benchmark for two-phase flow solvers. Even 
though the present code has been implemented with the capabilities of handling three independent 
phases, if two of them represent the same phase with phase fractions equally divided, the overall 
code should degenerates to a two phase equivalent solver. This test consists of a vertical tube of 12 
m length and 1 m in diameter. The tube is initially filled with an air-water homogeneous mixture with 
a liquid phase fraction 
𝛼
𝑙
0
= 0.8
. At the inlet a mixture of the same composition enters the tube with 
a liquid velocity of 
𝑣
𝑙
= 10 𝑚/𝑠
, whereas the gas is at rest (i.e., 
𝑣
𝑔
= 0 𝑚/𝑠).
Due to gravity 
acceleration and mass conservation, the liquid vein diameter decreases and a phase fraction 
discontinuities propagates downward. Here the momentum transfer term is negligible (i.e., drag and 
virtual mass terms absent) and the dominant effect is the gravity force. The analytical solution for 
𝛼
𝑙
is given by: 


10 
𝛼
𝑙
(𝑥, 𝑡) =
𝛼
𝑙
0
𝑣
𝑙
0
√2𝑔𝑥 + (𝑣
𝑙
0
)
2
𝑖𝑓 𝑥 ≤ 𝑢
𝑙
0
𝑡 +
𝑔𝑡
2
2
In figure 6, we plotted the analytical solution against the numerical one, computed with two 
discretization schemes: Upwind (1
st
order), Van Leer (2
nd
order). Due to time-dependent nature of 
the solution, we considered the results at 
𝑡 = 0.5
s. As expected, 2
nd
order scheme produces better 
results in shock-capturing abilities reducing the numerical diffusion across the interface. On the other 
hand, 1
st
order schemes show the highest tendency to smear the discontinuities. Alongside with the 
good agreement with the analytical benchmark, this test proves that the first two numerical aspects 
previously explained are correctly implemented in the algorithm. 
Figure 6: Water Faucet problem
 

Download 0,89 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish