A gentle introduction to deep learning in medical image processing


Important architectures in deep learning



Download 1,27 Mb.
bet6/15
Sana18.07.2022
Hajmi1,27 Mb.
#818719
1   2   3   4   5   6   7   8   9   ...   15
Bog'liq
2.2-reja

Important architectures in deep learning


With the developments of the previous section, much progress was made towards improved signal, image, video, and audio processing, as already detailed earlier. In this intro- duction, we are not able to highlight all developments, because this would go well beyond the scope of this document, and there are other sources that are more suited for this pur- pose [31,37,12]. Instead, we will only shortly discuss some advanced network architectures that we believe had, or will have, an impact on medical image processing.



2

= || − ||
Autoencoders use a contracting and an expanding branch to find representations of the input of a lower dimensional- ity [41]. They do not require annotations, as the network is trained to predict the original input using loss functions such as L(θ) fˆ (x) x 2. Variants use convolutional networks [42], add noise to the input [43], or aim at finding sparse representations [44].
Generative adversarial networks (GANs) employ two networks to learn a representative distribution from the train- ing data [45]. A generator network creates new images from a noise input, while a discriminator network tries to differen- tiate real images from generated images. Both are trained in an alternating manner such that both gradually improve for their respective tasks. GANs are known to generate plausible and realistically looking images. So-called Wasserstein GANs can reduce instability in training [46]. Conditional GANs [47]




allow to encode states in the process such that images with desired properties can be generated. CycleGANs [48] drive this even further as they allow to convert one image from one domain to another, for example from day to night, without directly corresponding images in the training data.

Download 1,27 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish