A1(t)
|
|
|
|
|
|
|
|
|
|
A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d1
|
|
|
1
|
|
|
|
|
|
|
|
|
|
(t) dt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t n
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
n !
|
|
|
|
|
|
p(n1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eat
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1 eat )
|
|
|
|
|
|
|
|
|
a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p( p a)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sin(t )
|
|
p sin cos
|
|
|
|
|
p2 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eat sin t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( p a)
|
2
|
|
2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
teat
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( p a)2
|
|
|
|
|
f (t)
|
|
|
|
|
|
|
|
F ( p)
|
|
|
|
|
df (t)
|
|
|
pF( p) f (0)
|
|
|
|
|
|
|
|
|
|
|
|
dt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
F ( p)
|
|
|
|
f (t)dt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bu ifodalarda p – LAPLAS OPERATORI deb yuritiladi.
Oprerator usulida R. L. C zanjirlarida xosila d/dt p – LAPLAS operatori bilan, integral esa 1/p ifoda bilan ALMASHTIRILADI.
94
Har bir elementning tok va kuchlanishlarini bog„lovchi Laplas formulasidan foydalangan xolda elektr zanjirlarining oddiy sxemalaridan OPERATOR xolatlariga o„tish usulini keltirish mumkin:
2- jadval
OPERATOR USULIGA MISOLLAR
Keltirilgan elektr zanjiri uchun OPERATOR usulida chiqish KUCHLANISHINI Hisoblash talab qilinsa, u xolda
Rasm 15.1.
Keltirilgan elektr zanjirini kommutatsiyadan keyingi xolat uchun boshqatdan chizib olamiz:
Rasm 15.2.
Ushbu sxema uchun OPERATOR TOKINI ANIQLAYMIZ:
I ( p)
|
U ( p)
|
|
|
U
|
|
|
|
|
UpC
|
|
|
|
|
|
|
UC
|
|
|
|
U
|
|
|
(15.7)
|
|
|
|
1
|
|
|
|
p( pRC 1)
|
|
|
|
|
|
1
|
|
|
1
|
|
|
Z ВХ ( p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p(R pC )
|
|
|
|
|
|
|
RC( p
|
RC )
|
|
R( p
|
RC )
|
|
|
|
|
|
|
|
|
|
|
|
|
CHIQISH KUCHLANISHI ESA quyidagicha ifodalanadi:
|
|
|
|
|
|
U 2 ( p) R I ( p)
|
UR
|
U
|
1
|
|
|
|
|
|
|
|
|
|
|
|
(15.8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R( p
|
1
|
)
|
( p
|
1
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RC
|
|
|
|
|
|
RC
|
|
|
|
|
|
|
|
Yuqoridagi keltirilgan tablitsadan foydalangan xolda
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F ( p)
|
|
U
|
|
|
|
|
|
|
|
|
|
|
|
|
(15.9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( p
|
|
|
1
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RC
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Elektr zanjirlarida OPERATOR usulida hisoblash uchun EKVIVALENT quyidagi sxemalar orqali ifodalanadi.
Rasm 15.3.
Quyidagi elektr zanjir uchun OPERATOR sxemasini chizing va operator tokini yozing.
Rasm 15.4.
Yuqoridagi elektr zanjiri uchun kommutatsiyadan keyingi OPERATOR sxemasini chizamiz:
96
Rasm 15.5.
Kommutatsiyadan keyin TOK quyidagi qiymatga teng bo„ladi
i(0)
|
U
|
|
100
|
1A
|
|
|
|
|
|
|
(15.10)
|
R
|
|
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Operator TOKINI hisoblaymiz:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100
|
) 10 1
|
|
|
|
|
|
|
U ( p) Li(0)
|
|
|
|
(
|
|
|
10 p 100
|
|
|
|
I ( p)
|
|
p
|
|
(15.11)
|
|
|
|
900 100 10
|
p(10 p 1000 )
|
|
R R pL
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ba'zi qisqartirishlardan keyin
|
|
|
|
|
|
I ( p)
|
10( p 10)
|
|
|
|
p 10
|
|
|
|
|
(15.12)
|
|
|
p( p 100)
|
|
|
|
|
10 p( p 100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
YOYILISH TEOREMASI
|
|
|
Operator umulida funksiya originalini f (t) va tasvirini F ( p)
|
F1( p)
|
|
F2 ( p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
jadval orqali emas, balki matematik ifoda orqali ham aniqlash mumkin, bunday matematik ifodaga YOYILISH TEOREMASI deb ataladi:
-
|
|
|
|
|
n
|
|
F
|
|
|
|
|
f (t)
|
|
|
|
1( p pk )
|
e pkt
|
|
|
|
|
`
|
|
|
|
|
n1
|
|
|
|
|
|
F2( p pk )
|
|
|
|
|
|
|
|
|
|
•
|
|
n
|
yig‟indi, quyidagi
|
|
Bu ifodada
|
|
|
n 1
|
|
|
|
|
|
•
|
ifodani
|
F1( p pk )
|
|
e
|
pkt
|
|
F
|
`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2( p pk )
|
|
|
|
(15.13)
(15.14)
F2 ( p) 0 nechta ildizga ega bo„lsa shuncha marta qo‟shadi.
97
TOK va KUCHLANISHLARNING OPERATOR SHAKLIDAGI BALANSI, operator qarshiligi va operator o„tkazuvchanliklar ifodalari quyidagi ko„rinishda bo„ladi:
Ui ( p) E j
i j
Z (
p)
U ( p)
I (
p)
Y (
p)
Z (1p)
(
p)
(15.15)
( p) U ( p)
PASSIV IKKI QUTBLI ELEKTR ZANJIRLARINING OPERATOR TENGLAMALARI VA EKVIVALENT SXEMALARINI KO„RIB CHIQAMIZ.
Do'stlaringiz bilan baham: