9-SINF MATEMATIKA
1-BILET
1.
Hisoblang:
(1
(
)
+1)*
2. (a+(a-2))*2=P=32 2a-2=16 2a=18
a=9 a-2=7
Javob :7sm, 9sm
3.
Soddalashtiring: tg(-α)ctg(-α)+cos
2
(-α)+sin
2
α
tg(-α)ctg(-α)+cos
2
(-α)+sin
2
α= (-tgα)(-ctgα)+ cos
2
α + sin
2
α=1+1=2
4.Romb barcha tomonlari teng bo’lgan parallelogramdir. Uning dioganallari o’zaro
perpendikular kesishadi.
5. a:b=4:3 a+a+b=P=66 , bundan 4x+4x+3x=11x=66 x=6
a=4x=4*6=24 b=3x=3*6=18
Javob:24sm, 24sm, 18sm.
2-BILET
1. Hisoblang:
-
-
=
2.
(
)
)=1
3.
Agar sinα+cosα=
bo‘lsa, sin
3
α+cos
3
α ni hisoblang
sin
3
α+cos
3
α=( sinα+cosα)*((sinα+cosα
= ( sinα+cosα)*
*((sinα+cosα
(sinα+cosα
=
(
)
4.Bir burchagi to’g’ri(9
) bo’lga uchburchak
to’g’ri burchakli uchburchak
deyi-
ladi. Uning katta tomoni tomoni
gipotenuza,
qolgan tomonlari esa
katetlar
deb ata-
ladi.
To’g’ri burchakli uchburchak
gipotenuzasiga tushirilgan balandlik formulasi:
5. 2*(a+(a+11))=P=58sm; 2a+11=29; 2a=18; a=9; a+11=20
Javob:9sm,20sm
3-BILET
01. Soddalashtiring: 4+5
√
+
√
√ √
5
√
+
√ √ √
(√ √ ) √ √
5
√
-
√
5
√
-5-5
√
Javob: -1
2.
t=o,6 h S-?
S=(
3.
Soddalashtiring:
)
2
3
(
)
2
3
sin(
)
2
cos(
)
2
(
tg
tg
=
4.Sinuslar teoremasi:
5
. BE=12,5sm, CE=5,5 sm, P=?
1)CD=CE=AB=5,5sm AD=BC=BE+EC=12,5+5,5=18sm
2)P=AB+BC+CD+AD=5,5+18+5,5+18=47sm
Javob:47sm
4-BILET
1.
-10m
2
-20mn-10n
2
=-10(m+n)
2
=-10(-20+19,8)
2
=-10*0,2
2
=-10*0,04=
-0,4
2.
(
)
3. Agar tgα+ctgα=a bo‘lsa, tg
2
α+ctg
2
α ni toping.
tg
2
α+ctg
2
α= (tgα+ctgα)
2
-2*tga*ctga=a
2
-2
Javob:a
2
-2
4. Agar uchburchakning har bir uchi aylananing yoyida yotsa, bunday holda aylana
uchburchakka tashqi chizilgan
, uchburchak esa
aylamaga ichki chizilgan
deyiladi.
R=
--
Tashqi chizilgan aylana radiusini toppish formulasi.
5. a=16sm b=12sm c(yon)=5sm S-?
1)h=
√
√ √
2)S=
*h=14*3=42
Javob: 42
5-BILET
1.
Hisoblang:
√
=
√
=
√
√
√
2. y=4x
2
+12x+11 parabola uchining koordinatalarini uchini grafigini chizmasdan,
aniqlang.
=
12*
Javob:(-1,5;1,5)
3.
Agar
x
x
x
x
sin
2
cos
3
cos
2
sin
5
= 3 bo‘lsa, ctgx ni toping.
x
x
x
x
sin
2
cos
3
cos
2
sin
5
= 3;
5sinx-2cox=9cosx+6sinx; sinx=-11cosx; ctgx=
4.Doira bo’laklari:
1.sektor------
2.segmenti----
5. Katetlar=a; a
√
Gipotenuza=2a=40
Javob=40sm
6-BILET
1. Javob=5*b
0,5
*(b+2)
2. y=3x
2
va y=x+2 funksiyalar grafiklarini kesishish nuqtalarining koordinatalarini
toping.
3x
2
=x+2 3x
2
-x-2=0 x=1;-
-
4. Ikkita uchburchakning burchaklari teng a tomonlari nisbati mos ravishda teng
bo’lsa, bu uchburchaklar
o’xshash uchburchaklar
deyiladi. Uchburchaklar
o’xshashligining 2-alomati-TBT(tomon-burchak-tomon) alomatidir.
5.
S=
,
Bundan
P=2*(18+12)=60
Javob:60sm
7-BILET
1.
3
9
+3
8
+3
7
+2•3
6
ifodaning qiymatini 41 ga qoldiqsiz bo‘linishini isbotlang.
3
9
+3
8
+3
7
+2•
2.
│8-4x│< 32 tengsizlikning nechta butun yechimlari bor?
-32
2)4x
, bundan -6
3. cosa=
1) sina=
√
√
√
2) tga=
4. Kosinuslar teoremasi: a
2
=b
2
+c
2
-2bc*cosA yoki cosA=
5.
–
|
| √
√ √
8-BILET
1.2
√
√
√
(√ )
(√ )(√ )
√ √
=
2. 12≤6-3x<18; 1)3x
2)3x
-4
3. Soddalashtiring:
sin
4
x-cos
4
x+cos
2
x=(sin
2
x+ cos
2
x)( sin
2
x- cos
2
x)+ cos
2
x= sin
2
x- cos
2
x- cos
2
x= sin
2
x
Javob:
sin
2
x
4.Pifagor teoremasi to’g’ri burchakli uchburchak uchun: c
2
=a
2
+b
2
Isboti: kosinuslar teoremasiga ko’ra
- c
2
=a
2
+b
2
-2ab*cos90
0
cos90
0
=0, demak 2ab*cos90
0
=0, bundan :
c
2
=a
2
+b
2
5. asos=a=16 h=4 yon tomon=x asosdagi burchak=
R=?
X=
√(
)
√ √
sin
√
√
R=
√
√
Javob:R=10sm
9-BILET
1. Hisoblang: (
2.
y=-5+6x-x
2
funksiyaning qiymatlar sohasini toping.
1)y=-5+6x-x
2
2) a=
Javob:
3.
=
4. 2 ta tomoni parallel, qolgan 2 ta tomoni parallel bo’lmagan to’rtburchak
trapet-
siya
deyiladi. Trapetsiyaning yuzi formulasi :
S=
5. Sinuslar teoremasiga ko’ra: 2R=
dm
10-BILET
1.
Ifodani soddalashtiring: (2a+3b)
2
–(2a-3b)
2
=4a
2
+12ab+9b
2
-4a
2
+12ab-9b
2
=
24ab
2. 1)x+8
-5
3.tga=1/2 demak, sina=
√
√
√
√
4.
Trapetsiyaning o’rta chizig’i
yon tomonlar o’rtasini tutushtiradi, asoslarga parallel va
asoslarning o’rta arifmetigiga teng:
5.
a=6sm; r=? R=?; r=
√
√
√
Javob:r=3; R=
√
11-BILET
1. javob=a+1
2.Tenglamani yeching:
│x
2
-5x
│= 5x-x
2
A.S=
1)
x
2
-5x= 5x-x
2
2x
2
=10x x=0 x=5
2)
x
2
-5x= x
2
-5x x
Javob:x=0;5
4.Qarama-qarshi tomonlari teng va parallel bo’lgan to’rtburcha
to’g’ri burchakli to’rtbur-
chak
deyiladi. Uning barcha burchaklari to’g’ri. Dioganallari o’zaro teng.
.5. a=2 b=3 c=4
cosA=
=
cosB=
cosC=
=
;
;
12-BILET
1.
√
√
√
√ (√ )
(√ )(√ )
(√ )
(√ )(√ )
√ √
=
2.y=
| |
y y=
| |
x
3
3.cosa=-0,8 II chorak , demak sina=
√ √
tga=sina/cosa=0,6/-0,8=0,75 ctga=1/tga=4/3
Javob:tga=
4.Har bir tomoniga nisbatan 1 yarimtekislikda yotuvchi ko’pburchak qavariq
ko’pburchak deyiladi. Qavariq ko’pburchakning dioganallarini toppish formulasi:
d=
5.a=3 120
0
+2
0
0
R=
13-BILET
1.
Hisoblang : 1998=a
√
√
√
√
2. {a
n
} arifmetik progressiyada a
2
+a
9
=20
bo‘lsa
, S
10
ni hisoblang.
1)a
2
+a
9
=2a
1
+9d=a
1
+a
10
=20, 2)S
10
=
S
10
=100
3.ctg(
1/tga=0,5
4.Uchburchakning 2ta tomoning o’rtalarini tutushtiruvchi va asosiga parallel
kesma
Uchburchakning o’rta chizig’i
deyiladi.
5. B
, bundan BO=9
OAB=60,ya’ni
AO=x AB=2x OB=x
√ √
A C
AB=2x=6
√ √
0
=54sm
2
Javob:54sm
2
D
O
14-BILET
1.
2.
3. (cos15
0
+sin15
0
)
2
=
cos
2
15
0
+2
*
sin15
0
* cos15
0
+ sin
2
15
0
=1+sin30=1+0,5=1,5
4.Agar aylana uchburchakning ichki sohasida yotsa va uning yoylari uchburchak
tomonlari urinsa bunday aylana
uchburchakka ichki chizilgan aylana deyiladi.
5.x=-7,5
15-BILET
1.
[ ]
2. a
7
=21 S
7
=205, bo’lsa, a
1
,d=?
205=
3.
√
√
sin
4. B A AB=urinma—Aylana tashqarisida nuqta va aylana
Yoyidagi nuqtalarni birlashtiruvchi kesma;
C AD=kesuvchi—Aylana tashqarisidagi nuqtada o’tib
Aylanani kesuvchi kesma;
D
AB
2
=AC*AD
5. O’rta chiziqlar nisbati tomonlar niisbatiga tengligidan------a:b:c=3:4:5 P=144sm
3x+4x+5x=12x=144 x=12 a=3x=36 b=4x=48 c=5x=60
Javob:36;48;60
16-BILET
1.
25
n
2
-(5
n
-4)
2
=(25n+5n-4)(25n-5n+4)=(30n-4)(20n+4)=
8
*(15n-2)(5n+1)
2. geometric progressiyada b
3
=135 S
3
=195
Demak b
1
+b
2
=195-135=60 b
1
*(1+q)=60 b
3
=b
1
*q
2
=135, demak b
1
=15 q=3
S
6
=
(
)
3.
4.
Ikkita uchburchakning burchaklari teng a tomonlari nisbati mos ravishda teng
bo’lsa, bu uchburchaklar
o’xshash uchburchaklar
deyiladi. Uchburchaklar
o’xshashligining 1-alomati-BTB(burchak-tomon-burchak) alomatidir.
5. Kesishuvchi vatarlar teoremasiga ko’ra: 3x*4x=12x
2
=16*48 x
2
=4*16 x=2*4=8
CE=3x=3*8=24 ED=4x=32
Javob:24;32
17-BILET
1. x+y=5800; 0,1x=0,35y+220, yani x=3,5y+2200 (x-kitob; y-daftar)
3,5y+2200+y=4,5y+2200=5800 4,5y=3600 y=800 x=5800-800=500
2.Cheksiz kamayuvchi geometrik progressiya S=150 b
1
=15
S=
3. 1+tg
2
a=
S=a*b*sina S=a*h
a
=b*h
b
S=
d
1
*d
2
*sina
5.S=3*7=21sm
2
18-BILET
1. 100%=21+14=35ta 21=x% x=
6
2.a
3
+a
9
=a
1
+a
11
=8 S
11
=
3.
sin (α+β)-2sinβ•cosα =
4.
Ikkita uchburchakning burchaklari teng a tomonlari nisbati mos ravishda teng
bo’lsa, bu uchburchaklar
o’xshash uchburchaklar
deyiladi. Uchburchaklar
o’xshashligining 3-alomati-TTT(tomon-tomon-tomon) alomatidir.
5.
0
=78
0
b=180
0
-78
0
=102
0
Javob:102;78
19-BILET
1.
Do'stlaringiz bilan baham: |