6-mavzu. Vektor maydonning diverginsiyasi, fizik ma’nosi, Ostrogratskiy teoremasi. Solenoidal maydon. Vektor maydonning rotori, uning xossalari va dekart koordinatalar sistemasida hisoblash. Vektor maydonining sirkulyatsiyasi



Download 0,84 Mb.
bet2/5
Sana14.02.2023
Hajmi0,84 Mb.
#910878
1   2   3   4   5
Bog'liq
6-mavzu. Vektor maydonning diverginsiyasi, fizik ma’nosi, Ostrog

Ta’rif. vektor maydonning divergensiyasi sohaning har bir nuqtasida nolga teng bo‘lsa, ya’ni

bo‘lsa, bu vektor maydon shu sohada solenoidli (yoki naychasimon) maydon deyiladi.
Shuning uchun solenoidli maydon uchun Ostogradskiy formulasiga ko‘ra

formulani hosil qilamiz, bu yerda yopiq sirt bo‘lib, sohani chegaralovchi tashqi normal yo‘nalishida orientirlangan. Bu maydonda biror yuzachani olamiz va chegarasining har bir nuqtasidan vektor chiziqlar o‘tkazamiz (7-chizma). Bu chiziqlar fazoning vektor naycha deb ataluvchi qismini chegaralaydi. Agar vektor oqayotgan suyuqlikning tezliklari maydonini tashkil etsa, u holda suyuqlik oqishi davomida bunday naycha bo‘ylab uni kesib o‘tmasdan harakatlanadi.



12-chizma.
yuzacha biror kesim va naychaning yon sirti bilan chegaralangan shunday naychaning biror qismini ko‘rib chiqamiz. (18) tenglik bunday yopiq sirt uchun quyidagi ko‘rinishni oladi:

bu tashqi normal bo‘yicha yo‘nalgan birlik vektor.
Naychaning yon sirtida normallar vektor maydoniga perpindikulyar bo‘lgani uchun

bo‘ladi va (70) tenglikdagi uchinchi qo‘shiluvchi nolga teng:

Shuning uchun (19) formula bunday ko‘rinishni oladi:

bundan

kelib chiqadi. yuzachadagi normalning yo‘nalishini tashqidan ichkiga almashtirib,

munosabatni hosil qilamiz. Bu solenoidli maydonda vektor naychaning har bir kesimidan o‘tkazilgan vektor chiziqlar yo‘nalishidagi vektorlar oqimi bir xil bo‘ladi, ya’ni manbasiz va qurdumsiz maydonda (chunki ) vektor naychaning har bir kesimidan bir xil miqdorda suyuqlik oqib o‘tadi. Solenoidli maydondagi vektor chiziqlar hech qayerda yo‘qolmaydi.


Vektor maydondagi chiziqli integral. Kuch maydoni bajargan ish.

Download 0,84 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish