6-ma’ruza. Graflar nazariyasi elementlari va o'tish algoritmlari



Download 0,88 Mb.
bet6/13
Sana13.07.2022
Hajmi0,88 Mb.
#785128
1   2   3   4   5   6   7   8   9   ...   13
Bog'liq
2 5204210931965365360

1- teorema. Har qanday chekli grafni 3 o‘lchovli Evklid9 fazosida10 geometrik ifodalash mumkin.
Isboti. Teoremaning quyidagi konstruktiv isbotini keltiramiz. Grafning abstrakt ta’rifiga binoan uning hech bo‘lmasa bitta uchi mavjud. Agar grafda faqat bitta uch bo‘lsa, u holda uni 3 o‘lchovli Evklid fazosining biror nuqtasi sifatida ifodalaymiz. Agar grafda uchlar bittadan ko‘p bo‘lsa, u holda ularni uch o‘lchovli Evklid fazosidagi biror to‘g‘ri chiziqning (hech qaysi ikkitasi ustma-ust tushmaydigan) nuqtalariga mos keladi deb hisoblaymiz. Shu to‘g‘ri chiziqdan qirralarning (yoylarning) har biriga mos keluvchi turli yarim tekisliklarni o‘tkazamiz (graf chekli bo‘lgani uchun buning imkoniyati bor). Har bir qirrani (yoyni) unga mos yarim tekislikda, chetlari mos uchlarni ifodalovchi nuqtalarda bo‘lgan hamda bu to‘g‘ri chiziq bilan boshqa umumiy nuqtasi bo‘lmagan qandaydir chiziq vositasida ifodalaymiz. Yarim tekisliklarning tuzilishiga ko‘ra bu chiziqlar, chetki nuqtalarni hisobga olmaganda, umumiy nuqtalarga ega emas. ■
Shuni ham ta’kidlash kerakki, 1- teoremadagi 3ni 2ga almashtirib bo‘lmaydi, chunki tekislikda qirralarini (yoylarini) ifodalovchi kesishmaydigan (aniqrog‘i, chetki nuqtalaridan boshqa umumiy nuqtalari bo‘lmagan) chiziqlar yordamida tasvirlash imkoniyati faqat ba’zi graflargagina xos, ya’ni har qanday grafning 2 o‘lchovli Evklid fazosida (tekislikda) geometrik ifodalanishi mavjud bo‘lavermaydi.
Graflarning geometrik ifodalanishiga doir misollar keltiramiz.
1- misol. 1- shaklda tasvirlangan grafni deb belgilaymiz. Berilgan graf belgilangan graf bo‘lib, 4ta uch va 6ta qirraga ega. Demak, u (4,6)-grafdir. Bu graf uchun: , , , , , , . grafning barcha ( ) qirralari oriyentirlanmagan (chunki uchlarini tutashtiruvchi chiziklarda yo‘nalish ko‘rsatilmagan) bo‘lgani uchun oriyentirlanmagan grafdir. Grafning qirralaridan biri, aniqrog‘i, sirtmoqdir, va esa karrali qirralardir. Bu grafda, masalan, 1 va 2 uchlar qo‘shni, 1 va 4 uchlar esa qo‘shni emas. Undagi 2 va 3 uchlar qirraga insident va, aksincha, qirra 2 va 3 uchlarga insidentdir. Bu yerda va qirralar qo‘shni qirralardir, chunki ular umumiy uchga (3 uch) ega, va qirralar esa qo‘shni emas. ■
2- misol. Geometrik ifodalanishi 2- shakldagi ko‘rinishda bo‘lgan oriyentirlangan grafni qaraymiz. Bu grafda o‘n bitta element bor: 5ta uch va 6ta yoy, ya’ni shaklda (5,6)-orgraf berilgan. Bu grafni bilan belgilaymiz, bu yerda , yoki . Berilgan orgrafda sirtmoq ham, karrali yoylar ham yo‘q. Bu grafning yoyi uchun 1 boshlang‘ich, 3 uch esa oxirgi uchdir. ■

Download 0,88 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish