2-ma’ruza Mavzu: Faktorlash muammosi va uni hisoblash; Qoldiq haqidagi Xitoy teoremasi; Sonni tub ko‘paytuvchilarga ajratish


-kadam . 3-qadamning oxirgi natijasi r0 = aye (mod n) biz qidirayotgan yechim deb elon qilinadi. Misol-1



Download 127,32 Kb.
bet6/8
Sana01.05.2023
Hajmi127,32 Kb.
#934060
1   2   3   4   5   6   7   8
Bog'liq
2-maruza

4-kadam . 3-qadamning oxirgi natijasi r0 = aye (mod n) biz qidirayotgan yechim deb elon qilinadi.
Misol-1. 431032 (mod 41) – qoldiqni hisoblang.
Yechish: e=1032, bu sonni ikkilik sanoq sistemasiga o‘tkazamiz:
1032= 210 +23 = 100000010002
yani m=10 , (v10 v9 v8 v7 v6 v5 v4 v3 v2 v1v0 ) 2 = (10000001000)2
Demak, algoritm qadamiga muvofiq:
Rm , m =10,9,…1,0
Qiymatlar quyidagi qoida bo‘yicha hisoblanadi:
R10 = 43 (mod 41)=2,
R9 = 22 *(mod 41)= 4,
R8 = 42(mod 41)=16,
R7 =162(mod 41)=10,
R6 = 102 (mod 41)=18,
R5 = 182 (mod 41)= 37,
R4 =372(mod 41)= 16,
R3 =162 *43(mod 41)= 20
R2=202 (mod 41)=31,
R1= 312(mod 41)=18,
R0 = 182 (mod 41)=37.
javob
431032 (mod 41) = 37.
Mashqlar
Effektiv algoritm yordamida quyidagilar hisoblansin.
1 3275 (mod 100).
2 65000 ( mod 1000).
3 1124681 ( mod 83).
Kvadratik taqqoslama
Tarif. Ushbu
ax2 + b x + c 0 ( mod m), (1)
ko‘rinishdagi taqqoslama kvadratik taqqoslama deyiladi.
Bu yerda a soni m ga bo‘linmaydi.
Teorema. (1) ko‘rinishdagi kvadratik taqqoslamani har doim

x 2 d ( mod m1 ) (2)
ko‘rinishga keltirsh mumkin.
Haqiqatan , (1) ning ikkala qismini va va modulini 4*a ga ko‘paytirsak ( bunga haqqimiz bor, chunki taqqoslama xossasiga ko‘ra ):
4a2 x2 + 4 a b x + 4as 0 ( mod 4m*a)
yoki
(2ax +b) 2 – b2 + 4ac 0 ( mod 4m*a) ,
u = 2ax + b desak, oxirgi taqqoslama
u2 b2 – 4ac ( mod 4 m*a) (3)
ko‘rinishga keladi . Nixoyat b2 – 4ac = d , 4*m*a = m1 belgilash kiritib,
u2 d ( mod m1 ) (4)
taqqoslamani hosil qilamiz. (1) ning har bir yechimi (4) ni ham qanoatlantiradi. Lekin (4) har bir yechimi (1) ning ham yechimi bo‘lavermaydi. Shuning uchun (4) ning yechimlari orasidan (1) ning ham yechimi bo‘ladiganlarini ajrata olish kerak . Buning uchun esa
x = (u-b)/ 2a
nisbat butun son ekanligiga qarash kerak, yani nisbat butun son bo‘lsa , (4) qanoatlantiruvchi yechim (1) ning ham yechimi bo‘ladi. Odatda misollar yechishda (1) dan (4) ga o‘tishda, taqqoslamaning chap qismini biror ifodaning to‘la kvadrati shakliga keltirib olish lozim.

Download 127,32 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish