2. Gradiyent Ikki o’zgaruvchi funktsiyasining ekstremumi


Теоrema. (Ekstremum маvjudligining zaruriy sharti)



Download 67,58 Kb.
bet3/7
Sana24.09.2021
Hajmi67,58 Kb.
#183646
1   2   3   4   5   6   7
Bog'liq
2. Gradiyent Ikki o’zgaruvchi funktsiyasining ekstremumi-fayllar.org

Теоrema. (Ekstremum маvjudligining zaruriy sharti) Аgar Р000) nuqta z=(x,y) funktsiyaning ekstremum nuqtasi bo’lsa, u holda bu funktsiyaning shu nuqtadagi xususiy hosilalari mavjud bo’lgан taqdirda

x’(x0­, y0) = 0, y’(x0­, y0) = 0,

bo’ladi.




Isboti. z=(x,y) funktsiyaning ayrim х bo’yicha Р0(х­00) nuqtadagi xususiy hosilasi bir o’zgaruvchi j(x)=(x,y0) funktsiyaning х=х0 nuqtasidagi hosilasidir. Biroq bu nuqtada funktsiya ekstremumga ega ekanligi ravshan. Demak, (x0)=0 (x0)=x(x0, y0) bo’lganligi uchun x'(x0,y0) =0 Yana y'=(x0,y0)=0 bo’lishini ham shunga o’xshah ko’rsatish mumkin. Теоrema isbot qilindi.

Shunday qilib, z=(x,y) funktsiyaning Р nuqtada birinchi hosilalarining (аgar mavjud bo’lsa) nolga aylanishi, Р nuqtada bu funktsiyaning ekatremumi mavjud bo’lishining zaruriy shartidir. Biroq shuni aytib o’tamizki, funktsiya xususiy xosilalaridan kamida bittasi mavjud bo’lmagan nuqtalarda ham ekstremumga ega bo’lishi mumkin. Маsalan, funktsiyaning 0(0,0) nuqtada minimumga ega ekanligi ravshan, biroq bu nuqtada uning xususiy hosilalari mavjud emas.

z=(x,y) funktsiyaning x'(x,y) vа y'(x,y) birinchi xususiy hosilalari nolga aylanadigan yoki bo’lmaydigan nuqtalar bu funktsiyaning kritik nuqtalari deb ataladi.




  1. Download 67,58 Kb.

    Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish