1. Предмет теории передачи сигналов



Download 182,81 Kb.
bet3/12
Sana31.05.2023
Hajmi182,81 Kb.
#947029
TuriЗадача
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
Кодирование и декодирование лекция (5)

x(t)=μs(t-τ)+ω(t), (1.1)
где s(t)— сигнал на входе канала, ω(t)— помеха, μ и τ — величины, характеризующие затухание и время задержки сигнала.
Канал, в котором μ и τ фиксированы во времени, называется каналом с постоянными параметрами. В реальных условиях проходит непрерывное и часто случайное изменение параметров μ и τ. Такие каналы называются каналами с переменными параметрами. Встречаются каналы, в которых сигнал в точку приема приходит по различным путям с различными затуханиями μ и различными запаздываниями τ . Такие каналы называют многопутевыми или многолучевыми.
4. Кодирование и модуляция
Преобразование дискретного сообщения в сигнал состоит из двух операций: кодирования и модуляции. Кодирование определяет закон построения сигнала, а модуляция — вид формируемого сигнала, который должен передаваться по каналу связи.
Простейшим примером дискретного сообщения является текст. Любой текст состоит из конечного числа элементов: букв, цифр, знаков препинания. Для европейских языков число элементов колеблется от 52 до 55, для восточных языков оно может исчисляться сотнями и даже тысячами. Так как число элементов в дискретном сообщении конечно, то их можно пронумеровать и тем самым свести передачу сообщения к передаче последовательности чисел.
Так, для передачи букв русского алфавита (их 32) необходимо передавать числа от 1 до 32. Для передачи любого числа, записанного в десятичной форме, требуется передача десяти цифр от 0 до 9. Практически для этого нужно передавать по каналу связи десять сигналов, соответствующих различным шифрам. Систему передачи дискретных сообщений можно существенно упростить, если воспользоваться при кодировании двоичной системой счисления.
В десятичной системе основанием счисления является число 10. Поэтому любое число N можно представить в виде
N (1.2)
где  ,— коэффициенты, принимающие значения от 0 до 9. Так, число 265 можно записать как  . Очевидно, в качестве основания счисления можно принять любое целое число т и представить число N как  (1.3)
где  коэффициенты, принимающие значение от 0 до m-1.
Задаваясь величиной т, можно построить любую систему счисления. При т=2 .получим двоичную систему, в которой числа записываются при помощи всего лишь двух цифр: 0 и 1. Например, число 13 в двоичной системе записывается 1101, что соответствует выражению  . Арифметические действия в двоичной системе весьма простые. Так, сложение осуществляется по следующим правилам: 0+0=0;0+1=1;1+0=1;1+1=10. Различают еще символическое поразрядное сложение без переноса в высший разряд, так называемое «сложение по модулю два». Правила этого сложения следующие: 0 0=0;0 1=1;1 0=1;1 1=0;
Если преобразовать последовательность элементов сообщения в последовательность двоичных чисел, то для передачи последних по каналу связи достаточно передавать всего лишь два кодовых символа: 0 и 1. Практическая реализация такой передачи весьма простая. Например, символы 0 и 1 могут передаваться колебаниями с различными частотами или посылками постоянного тока равной полярности. Благодаря своей простоте двоичная систему счисления нашла широкое применение при кодировании дискретных сообщений.
При кодировании происходит процесс преобразования элементов сообщения в соответствующие им числа (кодовые символы). Каждому элементу сообщения присваивается определенная совокупность кодовых символов, которая называется кодовой комбинацией. Совокупность кодовых комбинаций, обозначающих дискретные сообщения, называется кодом. Правило кодирования обычно выражается кодовой таблицей, в которой приводятся алфавит кодируемых сообщений и соответствующие им кодовые комбинации (см. табл. l.l и l.2). Множество возможных кодовых символов
Таблица 11 Таблица 12

называется кодовым алфавитом, а их количество – основанием кода. В общем случае при основании, когда m правила кодирования N элементов сообщения сходятся к правилам записи N различных чисел в  m-ичной системе счисления. Число символов n, образующих кодовую комбинацию, называется значность кода, или длиной кодовой комбинации.
В зависимости от системы счисления, используемой при кодировании, различают двухпозиционные и многопозиционные коды. К первым относятся все коды, в которых используется двоичная система счисления. Часто эти коды называют двоичными. К многопозиционным кодам относятся все коды, в которых число позиций (основание кода) больше двух. Различают коды равномерные и неравномерные.

Download 182,81 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish