Teorema.
Ikkita birgalikda bo’lgan hodisadan kamida bittasining ro’y berish
ehtimoli bu hodisalarning ehtimollari yig‘indisidan ularning birgalikda ro’y berish
ehtimolining ayirmasiga teng:
P(A+B) = P(A)+P(B)–P(AB)
Agar A va B hodisalar bog‘liq bo’lsa ,
P(A+B)=P(A)+P(B)–P(B)P(A/B)
bog‘liq
bo’lmasa
P(A+B)=P(A)+P(B)–P(A)P(B)
formulalaridan foydalanamiz.
Teorema.
Birgalikda bog‘liq bo’lmagan
A
1
,A
2
,…A
n
hodisalaridan kamida
bittasining ro’y berishidan iborat
A
hodisaning ehtimoli 1 dan
1
,
2
, …
n
qarama-qarshi hodisalar ehtimollari ko’paytmasining ayirmasiga teng:
P(A)=1–P(
1
)P(
2
)…P(
n
)
To’la gruppani tashkil etadigan birgalikda bo’lmagan
B
1
, B
2
, …, B
n
hodisalardan biri ro’y bergandagina ro’y berishi mumkin bo’lgan
A
hodisaning
ehtimoli gipotezalardan har birining ehtimolini
A
hodisaning tegishli shartli
ehtimoliga ko’paytmalari yig’indisiga teng:
)
(
)
(
...
)
(
)
(
)
(
)
(
)
(
2
1
2
1
a
P
B
P
A
P
B
P
A
P
B
P
A
P
n
B
n
B
B
(1)
Bunda,
P(B
1
)+P(B
2
)+…+P(B
n
)=1
.
(1)- to’la ehtimollik formulasi bo’ladi.
Do'stlaringiz bilan baham: |