1-laboratoriya ishi taqribiy integrallash usullari. Zaruriy aniqlikni ta’minlovchi qadamni tanlash. Nazariy qism



Download 0,66 Mb.
bet1/2
Sana01.07.2022
Hajmi0,66 Mb.
#727092
  1   2
Bog'liq
LI1


1-LABORATORIYA ISHI
Taqribiy integrallash usullari.
Zaruriy aniqlikni ta’minlovchi qadamni tanlash.
Nazariy qism
Ma’lumki, agar integral osti funksiyasi f(x) ning boshlang’ich funksiyasi F(x) ni topish mumkin bo’lmasa, aniq integralni hisoblashda Nyuton-Leybnits formulasi
(2.1)
ni tadbiq qilib bo’lmaydi. Bunday hollarda (2.1) aniq integralning geometrik ma’nosi, ya’ni y = f(x) funksiya grafigi bilan chegaralangan egri chiziqli trapetsiya yuzasini taqribiy hisoblashga asoslangan sonli usullarga murojaat qilinadi. Bunday usullar ko’p. Biz bu yerda ulardan faqat ikkitasida to’xtalamiz.

1-rasm. Simpson usuli.
1-rasmda berilgan ABCD egri chiziqli trapetsiya yuzasi (2.1) formula bo’yicha hisoblangan aniq integral qiymatiga teng. Shuning uchun integralni (2.1) formula bo’yicha hisoblashning iloji bo’lmasa, ABCD trapetsiya yuzasini hisoblashga o’tamiz. Buning uchun [a,b] oraliqni n = 2m juft bo’laklarga bo’lamiz. Bo’linish nuqtalari
; ; .
Simpson formulasiga ko’ra
. (2.2)
(2.2) formulani yoyib yozib yuborsak,
(2.3)
formulani hosil qilamiz. (2.3) formula taqribiy formula bo’lib, uning xatoligi O(h4) tartibida bo’lar ekan. Bu degani, (2.3) Simpson formulasi sodda, lekin ancha aniq formulalardan ekan. Amaliyotda bu formula juda keng qo’llaniladi. Uni dasturlash ham oson.
Monte-Karlo usuli esa ehtimolning geometrik va statistik ta’riflarini muvofiqlashtirishdan kelib chiqqan. Buning uchun y = f(x) funksiyani yuqori chegarasi |f(x)| < M, a x b topiladi.

2-rasm. Monte-Karlo usuli.
Chizma 2-rasmdagidek holat o’rinli bo’lsin, ya’ni
.
U holda
; .
Ikkinchi tarafdan, ehtimolning geometrik ta’rifiga ko’ra ABCE to’g’ri to’rtburchakka tavakkaliga tashlanadigan tasodifiy nuqta ABCD egri chiziqli trapetsiyaga tushish ehtimoli
;
. (2.4)
Agar A – tasodifiy hodisa ABCE to’g’ri to’rtburchakka tavakkaliga tashlangan nuqtaning ABCD egri chiziqli trapetsiyaga tushishi deb qaralsa, bu hodisaning ehtimolini hisoblash uchun ehtimolning statistik ta’rifidan foydalanamiz. Buning uchun [a,b] oraliqda tekis taqsimlangan xi tasodifiy miqdorlar va [0,M] oraliqda tekis taqsimlangan yi tasodifiy miqdorlar ketma-ketligini tuzamiz. Buning uchun kompyuterda mavjud bo’lgan psevdotasodifiy miqdorlar generatoridan foydalanish mumkin. Hosil bo’lgan bu ketma-ketlikning har bir juftligi (xi, yi), i = 1, 2, …, n, ABCE to’g’ri to’rtburchakka taaluqli bo’ladi. Ulardan ABCD trapetsiyaga taaluqlilarini ajratamiz. Buning uchun yi f(xi) shart bajarilishi kerak. Bunday nuqtalar soni m ta bo’lsin. U holda A – hodisa ehtimoli uchun
(2.5)
formuladan foydalanish mumkin. n – qanchalik katta bo’lsa, (2.5) formula shunchalik aniq bo’ladi. (2.5) formuladan topilgan qiymatni (2.4) formulaga olib borib qo’yilsa,
(2.6)
formula hosil bo’ladi. Integralni bu usulda hisoblash Monte-Karlo usuli deyiladi.

Download 0,66 Mb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish