Gidravlik sistemaning statsionar rejimini hisoblash uchun VBA tilida yozilgan dasturi
Option Explicit
Option Base 1
Const np% = 8, nk% = 5, nv% = 11
Dim vm!(nk), v!(nk), ak!(nk), p!(np), hg!(2), h!(2)
Dim a!, b!, c!, e!, ro!, pn!, g!, x!
Dim i%, kl%, ipr%
Dim bu As Boolean
Public Sub stat()
ipr = 1
With Worksheets("Ëèñò1")
' Idishlar balandligi (1-2) m
hg(1) = .Cells(4, 5): hg(2) = .Cells(5, 5)
'Zichlik (êã/m3)
ro = .Cells(6, 5)
'Normal bosim (ÌÏà)
pn = .Cells(6, 9)
' Boshlang'ich bosimlar (1-4) /ÌÏà/
For i = 1 To 4: p(i) = .Cells(8, i + 4): Next i
' O'tkazuvchanlik koeffitsentlari (1-5)
For i = 1 To 5: ak(i) = .Cells(9, i + 4): Next i
' Nisbiy xatolik ( % )
e = .Cells(11, 6)
'Oraliq javoblarni chiqarish 0-, 1-÷, 2-
kl = .Cells(10, 6)
End With
Worksheets("Ëèñò2").Activate
Cells.Select
Selection.Clear
Range("a1").Select
If kl = 2 Then
Cells(ipr, 5) = "Oraliq chiqarish": ipr = ipr + 1
Cells(ipr, 5) = "h": Cells(ipr, 6) = "p(5-7)": Cells(ipr, 7) = "vm": ipr = ipr + 1
End If
g = 9.815: e = e / 100: a = 0: b = hg(1) * (1 - e)
Call MPD(a, b, e, bu, x)
With Worksheets("Ëèñò2")
If bu Then
a = ro * g * 0.000001: b = p(6) + ro * g * hg(2) * 0.000001
c = (p(6) - pn) * hg(2)
h(2) = (b - Sqr(b * b - 4 * a * c)) / 2 / a
p(8) = pn * hg(2) / (hg(2) - h(2))
For i = 1 To 5: vm(i) = v(i) * ro: Next i
.Cells(1, 1) = "Natija"
.Cells(2, 1) = "h": .Cells(2, 2) = "p(5-7)": .Cells(2, 3) = "vm"
.Cells(3, 1) = h(1): .Cells(3, 2) = p(5): .Cells(3, 3) = vm(1)
.Cells(4, 1) = h(2): .Cells(4, 2) = p(6): .Cells(4, 3) = vm(2)
.Cells(5, 2) = p(7): .Cells(5, 3) = vm(3): .Cells(6, 3) = vm(4)
.Cells(7, 3) = vm(5)
Else
kl = 2
.Cells(1, 1) = "Yechim yo'q"
.Cells(2, 1) = "a": .Cells(2, 2) = "f(a)": .Cells(2, 3) = "b": .Cells(2, 4) = "f(b)"
.Cells(3, 1) = a
.Cells(ipr, 5) = "Oraliq chiqarish a": ipr = ipr + 1
.Cells(ipr, 5) = "h": .Cells(ipr, 6) = "p(5-7)": .Cells(ipr, 7) = "vm": ipr = ipr + 1
.Cells(3, 2) = FUNC(a)
.Cells(3, 3) = b
.Cells(1, 5) = "Oraliq chiqarish b": ipr = ipr + 1
.Cells(2, 5) = "h": .Cells(2, 6) = "p(5-7)": .Cells(2, 7) = "vm": ipr = ipr + 1
Cells(3, 4) = FUNC(b)
End If
End With
End Sub
Function FUNC(x!) As Single
Dim vm!(5), fx!
h(1) = x
p(7) = pn * hg(1) / (hg(1) - h(1))
p(5) = p(7) + ro * g * h(1) * 0.000001
v(1) = ak(1) * Sgn(p(1) - p(5)) * Sqr(Abs(p(1) - p(5)))
v(3) = ak(3) * Sgn(p(5) - p(3)) * Sqr(Abs(p(5) - p(3)))
v(4) = ak(5) * Sgn(p(5) - p(4)) * Sqr(Abs(p(5) - p(4)))
v(5) = v(1) - v(4) - v(3)
p(6) = p(5) - Sgn(v(5)) * (v(5) / ak(5)) ^ 2
v(2) = ak(2) * Sgn(p(6) - p(2)) * Sqr(Abs(p(6) - p(2)))
fx = (v(5) - v(2)) * ro
For i = 1 To 5: vm(i) = v(i) * ro: Next i
If kl = 0 Then GoTo 400
If kl = 1 Then GoTo 300
Cells(ipr, 5) = h(1): Cells(ipr, 6) = p(5): Cells(ipr, 7) = vm(1): ipr = ipr + 1
Cells(ipr, 6) = p(6): Cells(ipr, 7) = vm(2): ipr = ipr + 1
Cells(ipr, 6) = p(7): Cells(ipr, 7) = vm(3): ipr = ipr + 1
Cells(ipr, 7) = vm(4): ipr = ipr + 1
Cells(ipr, 7) = vm(5): ipr = ipr + 1
300: Cells(ipr, 5) = "x = ": Cells(ipr, 6) = x: Cells(ipr, 7) = " fx = ": Cells(ipr, 8) = fx: ipr = ipr + 1
400: FUNC = fx
End Function
Sub MPD(a!, b!, eps!, bu As Boolean, xcon!)
Dim fa!, fb!, x!, fx!
fa = FUNC(a): fb = FUNC(b)
If fa * fb > 0 Then: bu = False: GoTo 100
Do
x = (a + b) / 2: fx = FUNC(x)
If fx * fa < 0 Then b = x Else a = x
Loop While Abs(a - b) > eps
xcon = Abs(a + b) / 2: bu = True
100:
End Sub
Sub auto_open()
Worksheets("Ëèñò1").Activate
End Sub
Statik modelning parametrik sezgirligini kirish bosimi p1 ning o’zgarishiga bog’liqlik analizi
NATIJA p1=0,5
|
|
|
h
|
p(5-7)
|
vm
|
7,643861
|
0,499448
|
0,235023
|
8,499046
|
0,749661
|
-5,00339
|
|
0,424423
|
5,472181
|
|
|
-0,23502
|
|
|
-5,00214
|
|
|
|
NATIJA p1=1,2
|
|
|
h
|
p(5-7)
|
vm
|
8,331873
|
0,681252
|
,202416
|
8,67632
|
0,840628
|
-3,99215
|
|
0,599475
|
6,937233
|
|
|
4,257371
|
|
|
-3,99219
|
|
|
|
NATIJA p1=2,6
|
|
|
h
|
p(5-7)
|
vm
|
8,8002
|
0,919846
|
12,96208
|
8,854541
|
0,95992
|
-2,00201
|
|
0,833472
|
8,484373
|
|
|
6,479551
|
|
|
-2,00185
|
|
|
|
NATIJA p1=3,1
|
|
|
h
|
p(5-7)
|
vm
|
8,873745
|
0,974994
|
14,5774
|
8,889192
|
0,987493
|
-1,11837
|
|
0,887898
|
8,803375
|
|
|
6,891982
|
|
|
-1,11796
|
|
|
|
NATIJA p1=3,6
|
|
|
h
|
p(5-7)
|
vm
|
8,904491
|
1,000216
|
16,12385
|
8,904358
|
1,000104
|
0,101839
|
|
0,912818
|
8,945477
|
|
|
7,072592
|
|
|
0,105777
|
Rasm 4. Gidravlik sistemaning statik xarakteristikalari: p1 kirishdagi bosim o’zgarishiga bog’liq holda sistemaning rejim parametrlarini o’zgarishi
Statik modelning parametrik sezgirligini chiqish bosimi p3 ning o’zgarishiga bog’liqlik analizi
NATIJA p3=1
|
|
|
h
|
p(5-7)
|
vm
|
8,20063
|
0,636239
|
6,031258
|
8,636385
|
0,818111
|
-4,26484
|
|
0,55575
|
6,604841
|
|
|
3,691061
|
|
|
-4,26464
|
NATIJA p3=1,5
|
|
|
h
|
p(5-7)
|
vm
|
8,483238
|
0,742562
|
8,70309
|
8,727139
|
0,871289
|
-3,58763
|
|
0,659299
|
7,365882
|
|
|
4,925061
|
|
|
-3,58785
|
|
|
|
NATIJA p3=2
|
|
|
h
|
p(5-7)
|
vm
|
8,660908
|
0,831781
|
10,80842
|
8,794554
|
0,915887
|
-2,90022
|
|
0,746775
|
7,948468
|
|
|
5,760046
|
|
|
-2,9001
|
|
|
|
|
|
|
NATIJA p3=2,5
|
|
|
h
|
p(5-7)
|
vm
|
8,781183
|
0,906655
|
12,62278
|
8,845942
|
0,953331
|
-2,16031
|
|
0,820468
|
8,406279
|
|
|
6,376952
|
|
|
-2,16045
|
|
|
|
|
|
|
NATIJA p3=3
|
|
|
h
|
p(5-7)
|
vm
|
8,8619
|
0,965637
|
14,26311
|
8,883464
|
0,982817
|
-1,31083
|
|
0,878658
|
8,75007
|
|
|
6,823762
|
|
|
-1,31072
|
Rasm 3. Gidravlik sistemaning statik xarakteristikalari: p3 chiqishdagi bosim o’zgarishiga bog’liq holda sistemaning rejim parametrlarini o’zgarishi
3-bo’lim. Oddiy gidravlik sistemalarning dinamik modelini tuzish
Dinamik modelni qurishda yakuniy balans tenglamalari (11) va (12) tenglamalar sistemasida [MI (9) da] oddiy differensial tenglamalarga aylanadi:
(16)
(17)
bu yerda: va — 1-rasmda ko’rsatilgan gidravlik sistemadagi
1- va 2-idishlarning hajmi.
Agar 1- va 2- idishlar silindr ko’rinishida bo’lsa, suyuqlik hajmi VR=SH (S — silindrning ko’ndalang kesim yuzasi) ga teng va yuqorida ko’rsatilgan (16) va (17) tenglamalar quyidagi ko’rinishga keladi:
Differensial tenglamalar sistemasini kompyuterda ishlash va xususiy yechimni olish uchun boshlang’ich shartlarni kiritish lozim[5]:
(18’)
(19’)
Shu sosda Koshi masalasi yoki boshlang’ich shartlar masalasi ishlanadi va olinayotgan xususiy yechimlar [t(0), t(k)] yopiq intervalda ko’rilayotgan H1(t) va H2(t) funksiyalarni o’zida aks etadi. Bu funksiyalar va yechimlarini yaqinlashgan haqiqiy funksiyalaridir.
(18) va (19) differensial tenglamalar sistemasini kengroq umumiy ko’rinishi quyidagicha:
(20)
(21)
bu yerda f1(H1,H2) va f2(H1,H2) — aniq ko’rinishda yozilgan birinchi tartibli differensial tenglamaning o’ng tomonlari.
Differensial tenglamalarni integrallashning 2 usuli bor: aniq va noaniq.
Eylerning aniq usulida [5] differensial tenglamalar sistemasi yechimi har k-qadamda oxirgi-farqi sxemasi ko’rinishida ishlatiladi:
bu yerda Δt=h — integrallash qadami;
va ni bilgan holda, ni topish oson:
Shu asosda ni ma’lum qiymatlarida differensial tenglamaning o’ng tomoni f1() va f2() algoritmini hisoblash zarur.
Eylerning noaniq usuliga ko’ra (22) va (23) quyidagi ko’rinishga ega bo’ladi[6]:
Bu holda ni topishda (24) va (25) tenglamalar quyidagicha bo’ladi:
(20) va (21) ni (18) va (19) bilan solishtirish va (9) tenglamalar sistemasini bog’liqligi ko’rsatadiki f1 va f2 funksiyalar har k-qadamda aniqlanayotgan ni integrallariga nisbatan nochiziqlidir.
Bundan kelib chiqadiki, har k-qadamda ni integrallarini topish uchun (28) va (29) nochiziqli tenglamalar sistemasini topish zarur bo’ladi. Bu esa o’z navbatida hisobotni qiyinlashtiradi va vaqtni ko’p ketishiga sabab bo’ladi. Shuning uchun noaniq usullar sekin aniqlanadigan usullar toifasiga kiradi va ularni aniq usullar qoniqarli natija bermaganida qo’llaniladi (masalan, (24) va (25)).
Tajribalar ko’rsatadiki, ko’pchilik oddiy gidravlik sistemalar uchun aniq usul talab etilgan o’xshashlikni ta’minlaydi.
Aniq usulni 3 ta asosiy turi bor — Eyler, Eyler-Koshi, Runge-Kutta va ularga mos ravishda yaqinlashish funksiyalarini hisoblashni har k+1-qadamda integrallanish formulalari 5-jadvalda keltirilgan.
Jadval 5
Metod nomi
|
Qidirilayotgan funksiyaning har (k+1) integrallash qadamidagi yaqinlashish hisobi
|
Integrallashning har bir qadamidagi to’g’ri(правый) qismlarning hisoblarning
|
Eyler
|
|
1
|
3.1. Oddiy gidravlik sistemani dinamikasi algoritmini informatsion matritsa tenglamasini matematik ifodasi (MI) yordamida tanlash.
Oddiy gidravlik sistema dinamikasini matematik ifodasi (9) tenglamalar sistemasi ko’rinishiga ega, unda (6) va (7) balans tenglamalari (18) va (19) differensial tenglamalar bilan almashtirilgan va xususiy yechimlarni kompyuterda olish uchun sistemaga 2 ta boshlang’ich shart (18’) va (19’) kiritilgan (oddiy differensial tenglamalarning umumiy yechimi, odatda, analitik usulda topiladi).
Natijada (9) ni yechish zarur, unda (6) va (7) differensial tenglamalar bilan (18’) va (19’) boshlang’ich shartlar bor.
(18) va (19) differensial tenglamalarni yechish uchun informatsion matritsani qurishda ularni oxirgi-farq ko’rinishida ifodalsh maqsadga muvofiqdir:
bunda — (7*) va (8*) bilan (18’) va (19’) ga ko’ra boshlang’ich shartlarning kiritilgan qiymatlari; — H1(t ) va H2(t) topilayotgan funksiyalarning t=t(1) dagi integrallashning birinchi qadamidagi olinayotgan natijalarning izlanayotgan qiymatlari.
Agar integrallash intervali [t(o), t(k)] ga teng bo’lsa, unda (6*) va (7*) differensial tenglamalar bilan (18) va (19) (t(0), t(1), …, t(k-1)) qiymatlarida hisoblanadi. (6*) va (7*) ni oxirgi-farq ko’rinishidagi hosilasi natijasidagi oddiy gidravlik sistema dinamikasi informatsion matritsa tenglamasining MI si 6-jadvalda keltirilgan. Differensial tenglamalar sistemasi (18) va (19) ni yechimini topish uchun H1(t), H2(t)[t(o), t(k)] funksiyalarni, ularni topish uchun esa boshlang’ich shartdagi (18’) va (19’) — ni funksiyalarni topish talab etiladi. Unda hisoblashlarning oxiridagi natija t=t(0), t(1), …, t(k-1), t(k) qiymatlardagi diskret holda berilgan keltirilgan funksiyalar bo’ladi. Izlanayotgan funksiyalarning oxirgi qiymatlari hisoblashlarning 12- va 13- qadamida aniqlangan (informatsion matritsaning o’ng ustuni) — bo’ladi.
1-rasmda keltirilgan nostatsionar rejimdagi gidravlik sistema algoritmik hisobining blok-sxemasi 5-rasmda keltirilgan.
Gidravlik sistemaning nostatsionar rejimini ifodalovchi tenglamalar sistemasini information matritsasi
Jadval 6
№
|
V1
|
V2
|
V3
|
V4
|
V5
|
P5
|
P6
|
P7
|
P8
|
H1(0)
|
H1(k)
|
H2(0)
|
H2(k)
|
№
|
1
|
+
|
|
|
|
|
+
|
|
|
|
|
|
|
|
4
|
2
|
|
+
|
|
|
|
|
+
|
|
|
|
|
|
|
11
|
3
|
|
|
+
|
|
|
+
|
|
|
|
|
|
|
|
5
|
4
|
|
|
|
+
|
|
+
|
|
|
|
|
|
|
|
6
|
5
|
|
|
|
|
+
|
+
|
+
|
|
|
|
|
|
|
10
|
6’
|
+
|
|
+
|
+
|
|
|
|
|
|
+
|
+
|
|
|
12
|
7’
|
|
+
|
|
|
+
|
|
|
|
|
|
|
+
|
+
|
13
|
18’
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
1
|
19’
|
|
|
|
|
|
|
+
|
|
|
|
|
+
|
|
7
|
8
|
|
|
|
|
|
+
|
|
+
|
|
+
|
|
|
|
3
|
9
|
|
|
|
|
|
|
|
+
|
|
+
|
|
|
|
2
|
10
|
|
|
|
|
|
|
+
|
|
+
|
|
|
|
|
9
|
11
|
|
|
|
|
|
|
|
|
+
|
|
|
+
|
|
8
|
B
E
G
I
N
KIRISH
P1 ,P2, P3
P4
PN
H1(0)
H2(0)
t(0)
t(1)
19
18
H2(0)
H1(0)
H2(t(0))
9
11
8
P7
P5
3
4
7’
1
10
P6
2
f2
6’
V4
V1
V3
V2
H2(k)
H1(k)
H2(t)
H1(t(0))
P8
H1(t)
5
V5
f1
Chiqish
H1(t)
H2(t)
t<=t <=t(k)
END
5-rasm. 1-rasmda ko’rsatilgan gidravlik sistema nostatsionar rejiminining hisobining blok sxemasi
Jadval 7
Dinamik rejimdagi gidravlik sistema hisobi uchun boshlang’ich malumotlar
Jadval 8
Gidravlik sistemaning dinamik rejimini hisoblash uchun VBA tilida yozilgan dastur
Option Explicit
Option Base 1
Public culc As Integer
Const m As Byte = 2 'Yechiladigan deffrensial tenglamalar soni
Const np% = 8, nk% = 5, nv% = 11, g! = 9.8
Public del! 'qadam
Private k!
Private y0!(m), x0! 'Boshlang'ich qiymat
Private n% 'Qadamlar soni
Private kv% 'Karrali chiqarish
Private x1!, y1!(m), i%
Private ki!, ki1!, ki2!, vm!(nk), v!(nk), ak!(nk), p!(np)
Private hg!(m), h!(m), s!(m), pr!(m), ro!, pn!, x!, ipr%, ipr1%
' (-1)a<0 (1)a>0 (0)=0 quyidagi tenglikni qaytaruvchi sgn(a) funksiyasini qo'llaymiz
Sub dydx(x As Single, y() As Single, pr!())
Dim j%
For j = 1 To m: h(j) = y(j): Next j
p(7) = pn * hg(1) / (hg(1) - h(1)): p(8) = pn * hg(2) / (hg(2) - h(2))
p(5) = p(7) + ro * g * h(1) * 0.000001: p(6) = p(8) + ro * g * h(2) * 0.000001
v(1) = ak(1) * Sgn(p(1) - p(5)) * Sqr(Abs(p(1) - p(5)))
v(2) = ak(2) * Sgn(p(6) - p(2)) * Sqr(Abs(p(6) - p(2)))
v(3) = ak(3) * Sgn(p(5) - p(3)) * Sqr(Abs(p(5) - p(3)))
v(4) = ak(4) * Sgn(p(5) - p(4)) * Sqr(Abs(p(5) - p(4)))
v(5) = ak(5) * Sgn(p(5) - p(6)) * Sqr(Abs(p(5) - p(6)))
pr(1) = (v(1) - v(5) - v(3) - v(4)) / s(1): pr(2) = (v(5) - v(2)) / s(2)
For j = 1 To 5: vm(j) = v(j) * ro: Next j
With Worksheets("Лист2")
If ki > 0 And ki < 3 Then
If ki = 2 Then
.Cells(ipr, 1) = i: .Cells(ipr, 2) = "p(5-7)": .Cells(ipr, 6) = "vm"
.Cells(ipr, 3) = p(5): .Cells(ipr, 4) = p(6): .Cells(ipr, 5) = p(7)
.Cells(ipr, 7) = vm(1): .Cells(ipr, 8) = vm(2): .Cells(ipr, 9) = vm(3)
.Cells(ipr, 10) = vm(4): .Cells(ipr, 11) = vm(5)
End If
.Cells(ipr, 2) = "x": .Cells(ipr, 4) = "y(1-2)": .Cells(ipr, 7) = "pr(1-2)"
.Cells(ipr, 3) = x: .Cells(ipr, 5) = y(1): .Cells(ipr, 6) = y(2)
.Cells(ipr, 8) = pr(1): .Cells(ipr, 9) = pr(2): ipr = ipr + 1
End If
If ipr = 180 Then ipr = 1
End With
End Sub
Sub step(x As Single, y() As Single, del As Single, x1 As Single, y1() As Single)
'Шаг интегрирования по X и Y расчет X1 и Y1
Dim y12!(m), j%
Call dydx(x, y, pr)
For j = 1 To m: y12(j) = y(j) + del * pr(j) / 2: Next j
Call dydx(x + del / 2, y12, pr): x1 = x + del
For j = 1 To m: y1(j) = y(j) + del * pr(j): Next j
End Sub
Public Sub gidra()
Dim j%, contr As String
Static x0s!, y0s!(2)
ipr = 1: ipr1 = 1
With Worksheets("Лист1")
hg(1) = .Cells(4, 5): hg(2) = .Cells(5, 5): s(1) = .Cells(4, 9): s(2) = .Cells(5, 9)
ro = .Cells(6, 5): pn = .Cells(6, 9)
' Bosim (1-4) /Мпа/
For i = 1 To 4: p(i) = .Cells(8, i + 4): Next i
' O'tkazuvchanlik koeffitsenti (1-5)
For i = 1 To 5: ak(i) = .Cells(9, i + 4): Next i
' Boshlang'ich shartlar x0,y0(1),y0(2)
x0 = .Cells(10, 5): y0(1) = .Cells(10, 6): y0(2) = .Cells(10, 7)
If culc = 4 Then x0 = x0s: y0(1) = y0s(1): y0(2) = y0s(2)
'Qadamlar soni, qadam, chiqarish karraligi
n = .Cells(11, 5): del = .Cells(11, 6): kv = .Cells(11, 7)
' Nisbiy xatolik ( % ) и Chiqishga karralilik
ki1 = .Cells(12, 5): ki2 = .Cells(13, 5)
End With
Worksheets("Лист2").Activate
Cells.Select
Selection.Clear
Range("a1").Select
Worksheets("Лист3").Activate
Cells.Select
Selection.Clear
Range("a1").Select
For i = 1 To n
ki = ki1: Call step(x0, y0, del, x1, y1): x0 = x1: x0s = x0
For j = 1 To m: y0(j) = y1(j): y0s(j) = y0(j): Next j
If (i \ kv) = (i / kv) Then
If ki2 = 1 Then
If ipr1 = 1 Then
Worksheets("Лист3").Cells(ipr1, 1) = "x0"
Worksheets("Лист3").Cells(ipr1, 2) = "y0(1)"
Worksheets("Лист3").Cells(ipr1, 3) = "y0(2)": ipr1 = ipr1 + 1
End If
Worksheets("Лист3").Cells(ipr1, 1) = x0
Worksheets("Лист3").Cells(ipr1, 2) = y0(1)
Worksheets("Лист3").Cells(ipr1, 3) = y0(2)
ipr1 = ipr1 + 1
End If
If ki2 = 2 Then ki = ki2: Call dydx(x0, y0, pr)
Jadval 8 davomi
Gidravlik sistemaning dinamik xarakteristikalarini tekshirish
1 va 2 idishlardagi suyuqlik balandliklarini o’zgarishini idishlarni to’ldirilgan paytda vaqtga bog’liqligi
t
|
H1
|
H2
|
100
|
1,952733
|
,459754
|
200
|
3,516815
|
2,966098
|
300
|
4,689349
|
4,451053
|
400
|
5,685176
|
5,763426
|
500
|
6,342857
|
6,721832
|
600
|
6,73308
|
7,228492
|
700
|
6,943104
|
7,374005
|
800
|
7,004615
|
7,401515
|
900
|
7,017444
|
7,406671
|
1000
|
7,019904
|
7,407648
|
Boshlang'ich shartlar
|
t=0
|
H1=0.0м
|
H2=0.0м
|
|
|
|
HG1=8м
|
HG2=8м
|
1000 qadamda g’alayon ta’siri H1=9, H2=1.5
|
S1=1м2
|
S2=1м2
|
|
t
|
H1
|
H2
|
100
|
7,964007
|
5,463924
|
200
|
7,939804
|
,735189
|
300
|
8,31926
|
7,233254
|
400
|
8,588827
|
7,368537
|
500
|
8,694648
|
7,397664
|
600
|
8,725442
|
7,405161
|
700
|
8,733662
|
7,407163
|
800
|
8,735812
|
7,407689
|
900
|
8,736371
|
7,407825
|
1000
|
8,736515
|
7,40786
|
1100
|
7,90413
|
3,588407
|
1200
|
7,576959
|
5,386097
|
1300
|
7,781632
|
6,624864
|
1400
|
8,225001
|
7,183145
|
1500
|
8,545953
|
7,355958
|
1600
|
8,681153
|
7,394392
|
1700
|
8,721762
|
7,404273
|
1800
|
8,732694
|
7,406927
|
1900
|
8,735561
|
7,407627
|
2000
|
8,736307
|
7,407809
|
Boshlang'ich shartlar
|
|
|
t=0
|
H1=9м
|
H2=3.5м
|
HG1=10м
|
HG2=8м
|
|
S1=1м2
|
S2=1м2
|
|
Rasm 6. Gidravlik sistemaning dinamik xarakteristikalari: g’alayon bor yoki yo’qligida idishdagi suyuqlik sathining o’zgarishi
SAVOLLAR
Real jarayon kompyuter modeli va kompyuterli modellashtirish deganda nima tushuniladi ?
Kompyuterli (matematik) model qanday quriladi ?
Model adekvatligi qanday tekshiriladi ?
Strukturali va parametrik identifikatsiyalash kompyuterli modeli nima maqsadda ishlatiladi ?
Nima uchun masalani algoritmlashda matematik dekompozitsiyadan foydalanish taklif etiladi ?
Qanday va qaysi maqsadda tenglamalar sistemasining informatsion matritsasi matematik ifodasi quriladi ?
Blok-sxemani qurish usuli va undagi asosiy belgilanishlar ?
Bir o’zgaruvchili tenglamani yechishning qanday usullarini bilasiz va ular bir-biridan qanday farq qiladi ?
Oddiy differensial tenglamalarni yechishni aniq usuli noaniq usulidan qanday farq qiladi ?
Oddiy differensial tenglamalarni yechishni aniq usullaridan qaysilarini bilasiz ?
Oddiy differensial tenglamaning yechimiga integrallash qadami qanday ta’sir ko’rsatadi ?
Oddiy differensial tenglamaning yechimini topishda karralilik nimani anglatadi ?
Tenglamani yechishda iteratsion jarayon yakunining sharti qanday ?
Bitta o’zgaruvchilini hisoblashda ildizni ajratib olish nimamaqsadda qo’llaniladi ?
Bitta o’zgaruvchilini hisoblashda o’xshslik yo’q bo’lsa nima qilish kerak ?
Kompyuterli modelni parametrik sezgirligini analiz qilish qanday amalga oshiriladi ?
Statik va dinamik xarakteristikalarni kompyuterli modeli qanday quriladi ?
Nima maqsadda modelni parametrik sezgirligini analizlash amalga oshiriladi va uni statik va dinamik xarakteristikalari qanday quriladi ?
Oddiy gidravlik sistemani kompyuterli modellashtirishda qanday asosiy ruxsatmalar qabul qilinadi ?
Suyuqlikning klapanda harakatlanishi qanday ifodalanadi ?
Yopiq idishni suyuqlik bilan to’ldirish jarayoni qanday ifodalanadi ?
Tenglamalr sistemasi matematik ifodasini analizi qanday va qaysi maqsadda o’tkaziladi ?
Tenglamalar sistemasini matematik ifodasini ozod darajalari soni qanday aniqlanadi ?
Tenglamalar sistemasi matematik ifodasiga nisbatan aniqlanayotgan o’zgaruvchilar qanday topiladi ?
Oddiy gidravlik sistemalarni kompyuterda bajarish uchun ularni algoritmi qanday quriladi ?
Xulosa
Kurs ishini bajarish davomida dastlab texnologik sistemaning modeli qurildi va uning adekvatligi tekshirildi.Sistemadagi barcha jarayonlar ideal holatda deb qabul qilindi va bu qo’yilgan masalani yechimini topishni osonlashtirdi.
Dastlabki holatda oddiy gidravlik sistemaning statik xarakteristikalari qurildi va birqancha tajribalar o’tkazildi. Bu holatda vaqt hisobga olinmadi va kirish, chiqish bosimlarining idishdagi suyuqlik sathiga o’zaro bog’liqligi o’rganildi. Suyuqlik bosimi oshishi bilan klapnlardagi sarf oshdi buning natijasida idishdagi suyuqlik sathi ko’tarildi.
Keyingi holatda gidravlik sistemaning dinamik xarakteristikalari qurildi va bunda ham bir nechta tajribalar o’tkazildi.Vaqt o’zgarishi bilan ikkita idishdagi suyuqlik sathi ortdi va ma’lum bir vaqtdan so’ng sistema muvozanatga erishdi ya’ni suyuqlik sathi o’zgarmas qoldi. Buning natijasida idishdagi suyuqlik sathi chiqish va kirish bosimlariga bog’liqligi aniqlandi. Bundan tashqari, tashqi ta’sirlarning sistemagi qanday ta’sir ko’rsatishi ko’rib chiqilidi.
Kurs ishini tayyorlash davomida gidravlik sistemalarni yechishning ber necha usullari bilan tanishib chiqdim. Bu kurs ishida men Eyler va Yarim bo’linish usullarini ishlatdim va ularni puxta o’rgandim.Bundan tashqari gidravlik sistemalarni kompyuterli modellashtrish fanidan bilimlarimni mustahkamlab olish bilan bir qatorda kompyuterda programmallash bo'yicha bilimga ega bo’ldim.
ADABIYOTLAR
Кафаров В.В., Глебов М.Б. Математическое моделирование основных процессов химических производств. М.: Высшая школа. 1991.-400 с.
Ахназарова С.Л., Кафаров В.В. Оптимизация эксперимента в химии и химической технологи. М.: Высшая школа.-1978.-319 с.
Бояринов А.И., Кафаров В.В. Методы оптимизации в химиче-ской технологии. М.: Химия.-1975.-576 с.
Скобло А.И., Трегубова И.А., Молоканов Ю.К. Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности.-2-ое издание. М.: Химия.-1982.-584 с.
Гартман Т.Н., Епишкин А.П., Шакина Э.А. Вычислительная математика для химико-технологических специальностей: Методические указания теоретический курс и контрольные задания для студентов-заочников вузов.-М.: Высшая школа.-1984.-112 с.
Косарев В.И. 12 лекций по вычислительной математике (вводный курс). Учебн. пособие для вузов. Изд. 2-е, испр. и доп. М.:Изд-во МФТИ.-2000.-224 с.
СамоучительVBA. как это делается вWord, Excel, Access.- СПб.: Изд-во Наука и Техника, 2001.-490 с.
0>
Do'stlaringiz bilan baham: |