1. Binar munosabat



Download 28,41 Kb.
bet6/7
Sana13.01.2022
Hajmi28,41 Kb.
#358996
1   2   3   4   5   6   7
Bog'liq
1. Binar munosabat

14- t a ’ r i f . p biror X to'plamdagi ekvivalentlik munosabati bo'lsin. Agar X to'plamning A qism to'plamida shunday x element topilib, A = {y / x p y } bo ‘Isa, и holda A qism to 'plam ekvivalentlik
sinfi
yoki ekvivalentlik p -sin/i deb ataladi.
Keltirilgan ta’rifga asosan X to'plamning A qism to'plami ekvivalentlik sinfi bo'lishi uchun X to'plamning Л = ;р [{.*}] tenglikni qanoatlantiruvchi x elementi mavjud bo'lishi yetarli va zarurdir. Agar p
munosabat to'g'risida hech qanday shubha fag'ifmaydigan bo'lsa, u holda X to'plamdagi x elementlarning p -obrazlari to'plami [x] slhaklrda belgilanadi (ya’ni p[{x}] = [x]) va bu to'plam x yuzaga keltirgan 1‘kvivak‘ntlik sinfi deb ataladi. Ekvivalentlik sinfi quyidagi ikki xususiyatga ega:
1) X e [x] - bir sinfning hamma elementlari o'zaro ekvivalentdir;
2) agar x p у bo'lsa, u holda [x] = [ j'] .

1) xossa ekvivalentlik munosabatining refleksivlik xususiyatidan kelib chiqadi.


2) xossani isbotlaymiz. x p у bo'lsin, ya’ni x element у elementga ekvivalent bo'lsin, u holda [у] с [x ]. Haqiqatan ham, z 6 [j^] (ya’ni, y p z ) munosabatdan va x p z bo'lganligi uchun, p munosabatning

tranzitiv xususiyatiga asosan, x p z kelib chiqadi, ya’ni z e [ x \ . Ekvivalentlik munosabatining simmetriklik xossasidan foydalanib, [x] с [у] bo'lishini isbot qilish mumkin. Demak, [x] [ y ]


3. Funksiya tushunchasi. Funksiyalar superpozitsiyasi. Funksiya tushunchasini yuqorida o'rganilgan atamalar orqali aniqlaymiz.Funksiya shunday munosabatki, uning turli elementlarining (juftliklarining) birinchi koordinatalari hech qachon o'zaro teng bo'lmaydi. Funksiyaning grafigi tartiblangan juftliklar to'plamidan iborat. Funksiya bilan uning grafigi orasida hech qanday farq yo'q. Shunday qilib, f munosabat quyidagi talablami qanoatlantirgandagina funksiya bo'la oladi:
1) ning elementlari faqat tartiblangan juftliklardan iborat;
2) agar < x , y > va < x , z > elementlar /n in g elementlari bo'lsa, u holda y - z bo'ladi.
8 - m i s o l . {< 1,2 >,< 2,2 >,< 3,4 >} shaklda berilgan 5 munosabat funksiyadir va D s = {1,2,3},


Download 28,41 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish