*05. V0605. Gasqui. Individual



Download 117,76 Kb.
Pdf ko'rish
bet8/22
Sana14.02.2023
Hajmi117,76 Kb.
#911204
1   ...   4   5   6   7   8   9   10   11   ...   22
Bog'liq
v0605

f
λ
(d) =
λ
.exp(–
λ
.d) and S
λ
(d) = exp(–
λ
.d);
the parameter 
λ 
is interpreted as the aver-
age number of events per day if the inter-
vals are expressed as days; 1/
λ
is then the
average time interval (in days) between two
consecutive events. For one lactation in a
cow, let N(t

t) be the number of mastitis
occurring from t

up to a time preceding


A recurrent mastitis model in dairy cows
589
t*. We first assume that is a homogeneous
Poisson process observed in the interval
[t
0
t*], with a constant hazard 
λ
. Then the
random variable counting the clinical
mastitis until t* has a Poisson distribution
with parameter (
λ
.(t* – t
0
)), i.e. for every
integer w

0, P(w) = 

(
λ
.(t* – t
0
))
w
/
w!

exp{–
λ
.(t* – t
0
)}. This is the Poisson
distribution habitually used for the number
of events occurring during a lactation in the
GLM models. With an exponential distri-
bution and a series of n* unrelated lacta-
tions with different productive durations
denoted (t*
j
– t
0j
) for lactation j, the number
of events W
j
in lactation has a Poisson dis-
tribution whose parameter is (
λ
.(t*
j
– t
0j
)). If
n* independent lactations are considered
globally, including mastitis, the likelihood
may be written: 
(1)
This expression leads to an estimator 
of the parameter, obtained
by maximising the likelihood with respect to
λ
; this estimator depends on the productive
durations (t
*
j
– t
0j
) actually observed for the
n* lactations. So the number of events
for all the variable-duration lac-
tations does not have a Poisson distribution
and a dispersion appears as compared to
a classical Poisson variable.
Let us consider the case where the hazard
is constant throughout each lactation but
different from one lactation to the other.
This is the case when the individual char-
acteristics of cows, for example parity, alter
the risk of clinical mastitis. For lactation j,
the mastitis variable count W
j
has a Poisson
distribution with parameter (
λ
j
· (t*
j
– t
0j
)).
There again the number of events for all
lactations with variable durations and haz-
ards is different from a Poisson variable,
with an overdispersion with respect to the
standard Poisson variable.
With the GLMs, such models can take
into account individual or environmental
fixed effect factors which characterise the
lactations, and include the observed lactation
duration in the form of a covariate (offset) as
well as a random-effect cow factor. This
type of model was used to compare the
results obtained with this GLM method
(mixed model) and those defined hereafter
with a survival method based on a likeli-
hood that generalised L(
λ
) (Eq. (1)) and also
integrated a lactation stage factor and a rela-
tion between consecutive events. The mixed
model used in the GLM approach (MM
model) was written:
g(E(W)) = X ·
θ
+ offset(log(t* – t
0
)) + a,
where E(W) is the mean number of mastitis in
a lactation according to a Poisson distribu-
tion, g is the associated canonical link func-
tion (log function), X is the incidence matrix,
θ
is the vector of the parameters to be esti-
mated, which contains the fixed effects of
the factors included in the model (3-mode
parity, 3-mode breed and 4-mode calving
month), the offset covariate offset(log(t* –

Download 117,76 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish