В вычислительной математике существенную роль играет интерполяция функций, т е



Download 70,24 Kb.
bet1/4
Sana23.02.2022
Hajmi70,24 Kb.
#133891
TuriРеферат
  1   2   3   4
Bog'liq
Amirov Behruz. MM doc



Содержание


Введение
1. Постановка задачи интерполяции
1.1 Определение термина интерполяции
1.2 Как выбрать интерполянт
1.3 Полиноминальная интерполяция
1.4 Интерполяционный полином Лагранжа
2. Один вид обобщенной интерполяции
2.1 Обобщенная интерполяция
2.2 Важное представление гладкой функции
Заключение
Список использованной литературы



Введение


В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например полученным в ходе некоторого эксперимента. Для вычисления многих функций, оказывается, эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений.


В нашем случае для более полного раскрытия данной темы подробно рассмотрим для начала само понятие интерполяции, далее интерполирование непосредственно гладкой функции и интерполирование гладкой функции в точке.
Цель работы: изучение интерполирования гладких функций и практическое применение интерполирования функций.

1. Постановка задачи интерполяции


1.1 Определение термина интерполяции
Пусть для функции f(x), определенной на какой - либо части R, известны её значения на некотором конечном множестве точек x1, x2, …, xn  [a,b], и в этих точках функция f(x) определена как:
,
Требуется вычислить, хотя бы приближенно, значения при всех x.
Такая задача может возникнуть при проведении различных экспериментов, когда значения искомой функции определяются в дискретные моменты времени, либо в теории приближения, когда сложная функция сравнительно просто вычисляется при некоторых значениях аргумента, для функций заданных таблицей или графически и т.п.
Обычно функцию g(xi), xi  [a,b], , с помощью которой осуществляется приближение, находят так, чтобы:
( )
Такой способ приближения называют интерполяцией или интерполированием. Точки x1, x2, …, xn называют узлами интерполяции, если точка x, в которой вычисляется f(x), лежит вне отрезка [a,b], то употребляют термин экстраполяции. Функцию g(xi), , называют интерполянтом.
При этом следует ответить на следующий вопрос.


Download 70,24 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish