Termiz davlat universiteti fizika- matematika fakulteti matematik tahlil kafedrasi



Download 0.82 Mb.
bet3/9
Sana25.06.2017
Hajmi0.82 Mb.
1   2   3   4   5   6   7   8   9

REJA:

1. Qism gruppalar. Misollar.

2. Gruppalar va ularga misollar.

3. Gruppalarning sodda xossalari.

4. Umumlashgan assosiativ qonuni .

5. Gomomorf va izomorf gruppalar.

ADABIYOTLAR [1,2,3]

Faraz etaylik, bizga bitta binar t va unar  algebraik amal aniqlangan G bo'sh bo'lmagan to'plam berilgan bo'lsin. Agarda G to'plamning elementlari unda aniqlangan t amalga nisbatan assosiativlik qonuniga buysinsa, ya'ni:

1). a,b,c G (at b)t c=at(b t c) tenglikni qanoatlantirsa, G; t algebraga t amalga nisbatan yarim gruppa deyiladi. Agar G; t,* - yarim gruppa

2). a G, eG , at e = eta= a;

3). a G, a* G , at a* = a*ta= e;

shartlarni qanoatlantirsa, G; t,* ga t amalga nisbatan gruppa deyiladi.



е ga G = G; t,* gruppaning neytral elementi, a*ga esa a elementga simmetrik element deyiladi.

Agarda G = G; t,* gruppaning elementlari

4). a,b G at b = b t a

shartni qanoatlantirsa,G ga kommutativ gruppa yoki Abel gruppasi deyiladi.

Neytral elementga ega bo'lgan yarim gruppaga monoid deyiladi.

Agar М G bo'lib М ; t, * gruppa bo'lsa, bu gruppaga G = G; t,* gruppaning qism gruppasi deyiladi.



1-teorema. Agar G = G; t, * gruppa bo'lsa, uning ixtiyoriy Qism to'plami M ning t amalga nisbatan qism gruppa bo'lishi uchun:

1).  h,h h t h ;

2).  h, h-1 

shartlarning bajarilishi zarur va yetarlidir.



Isboti. Zaruriy shart. М ; t, * gruppa bo'lsin,u holda 1) va 2) shartlarning bajarilishi gruppa ta'rifidan bevosita kelib chiqadi.

Yetarli sharti. 1) va 2) shartlar bajarilsin. U holda М G qism to'plamning G ning qism gruppasi bo'lishini ko'rsatamiz. Shartga ko'ra h,h uchun h t h , ya'ni M to'plam t amalga nisbatan yopiqdir va h, h', h''  lar uchun h t (h't h'')=(ht h')t h'' o'rinli, chunki h, h', h''  G . 2) va 1) shartlardan ht h-1 = eM.

Demak, 1), 2), 3) shartlar bajariladi va М ; t, * - gruppa, ya'ni G ning qism gruppasi.

Misollar . 1. N-natural sonlar to'plamini arifmetik qo'shish amaliga nisbatan tekshiraylik. Ma'lumki, n,m N, m+n N.

1). m, n,e N, m+(n+e) =(m+n)+e bajariladi .

2). m, eN, m+e= e+m= m, e=0 N, ya'ni bu shart bajarilmaydi .

Demak, N= N; +  yarim gruppa ekan .

Endi shu to'plamni ko'paytirishga nisbatan tekshiraylik. m,n N m nN.

1). m,n,e N, m(n e)=(m n) e bajariladi.

2). m N , e=1N , m1 =1 m= m bajariladi .

3). m N, m'N, m m' = m' m =1 bo'lishi kerak.

m' =1/m N . Demak, bu shart bajarilmaydi . Shunday qilib N=  N,   monoid bo'lar ekan .

2. Barcha butun sonlar to'plami Z qo'shish amaliga nisbatan gruppa bo'ladi .



Z = Z; + da a ga teskari element (- a) hamda neytral element 0 bo'ladi .

Z = Z; + ga butun sonlarning additiv gruppasi deyiladi.

Endi Z ni ko'paytirishga nisbatan qarasak, Z =  Z; +  monoid bo'ladi, chunki a 0 ga (teskari) simmetrik element a-1=1/aZ.

3. Barcha rasional sonlar to'plami Q qo'shishga nisbatan additiv Abel gruppasi

Q= Q; + bo'ladi. Agar Q1=Q \{0} to'plamni qarasak, Q1= Q1;  ham multiplikativ gruppa bo'ladi.

4. Haqiqiy sonldar to'plamini qarasak, u holda R= R; + additiv Abel gruppasi; R1= R1;  esa multiplikativ Abel gruppasi bo'ladi. Bu yerda R1= =R \{0}.

5. m0 moduli bo'yicha chegirmalar sinflari {C0,С1, C2, ... , Cm-1}=Z / mZ to'plamida qo'shish amalini

Ci+j , agarda 0 i+j m-1 bo'lsa;



Ci +Cj = (*)

Ci+j-m , agarda i+j  m bo'lganda;

tenglik bilan aniqlasak, Z/mZ= Z/ mZ; + additiv Abel gruppasi bo'ladi. Bunda neytral element C0 ; Ci elementga qarama karshi element Cm-i sinf bo'ladi, chunki Ci+ Cm- = Cm = C0 .

6. m=6 modul bo'yicha chegirmalar sinflari to'plami Z/6Z={ C0 ,С1, C2, C3,С4, C5, } dan iborat bo'ladi. (*)ga ko'ra



_____________________________

C0 С1 C2 C3 С4 C5

__+_________________________



C0 C0 С1 C2 C3 С4 C5

_____________________________



C0 C0 С1 C2 C3 С4 C5

_________________________________________

C0 C0 С1 C2 C3 С4 C5

__________________________________

C0 C0 С1 C2 C3 С4 C5

_____________________________

C0 C0 С1 C2 C3 С4 C5

______________________________
Bu jadvaldan foydalanib gruppa ta'rifidagi 1), 2), 3), 4), shartlarning bajarilishini osonlik bilan tekshirish mumkin.

Z/6Z= Z/ 6Z; + - additiv abel gruppasi.

7). Z/mZ to'plamda ko'paytirish amalini

Cij , agarda 0  ij  m-1 bo'lsa;

Ci Cj =  (*)

Cr , agarda ij m va ij=mq+r bo'lsa;

tenglik bilan aniqlasak.  Z/ mZ; -multiplikativ monoid bo'ladi.

Bunda neytral element С1 bo'ladi, assosiativlik qonuni bajariladi, lekin ixtiyoriy Сi uchun Ci Cj = C1 shartni qanoatlantiruvchi Cj element mavjud emas.

Masalan, m=6 da C3 C0 = C0 , C3 C1 = C3 , C3 C2 = C0 , C3C3 = C3 , C3C4 = C0 , C3 C5 =C3, ya'ni C3 Cj = C1 tenglikni qanoatlantiruvchi Cj sinf mavjud emas.

8). М={1,-1} to'plamning arifmetik ko'paytirish amaliga nisbatan multiplikativ gruppa bo'lishligini isbotlang.

9). a+b3 ko'rinishdagi sonlar to'plamini a,b R bo'lganda ko'paytirish va qo'shish amallariga nisbatan gruppa bo'lish yoki bo'lmasligini tekshiring.

GRUPPANING XOSSALARI
1. Ixtiyoriy gruppada neytral element bir qiymatli aniqlanadi va gruppaning istalgan elementi uchun yagona teskari (simmetrik )element mavjud bo'ladi. Biz bu xossani ilgari umumiy holda isbotlagan edik.

2. Har qanday multiplikativ gruppada bo'lish munosabati o'rinli, ya'ni istalgan a va b elementlar uchun shunday x,y elementlar topiladiki, аx=b, yа=b tenglamalar yagona yechimga ega .



Isboti. ax=b tenglamani chap tomondan а-1 ga ko'paytirsak, а-1(ax)= а-1b yoki (а-1 a)x= а-1b ex = а-1b x= а-1 b ga ega bo'lamiz. x= а-1b bilan birga c ham ax=b tenglamaning yechimi bo'lsa, u holda c=e c=( а-1 a)c= а-1(ac); bu yerda ас =b bo'lgani uchun c= а-1b, ya'ni с= x.

3. Istalgan grupaning elementlari regulyar elementlardir .

Haqiqatan ham at b= at c b=c va bta= cta b=c kelib chiqadi. Gruppaning elementlariga simmetrik а' element mavjut bo'lgani uchun

а't(at b)= а't (аt c)  (а't a) t b=( а' t a)tc  et b=etc b=c .

Keyingi tenglik ham shuning singari isbotlanadi.

4. G, t - gruppaning ixtiyoriy n ta elementi shu gruppada aniqlangan algebraik amal t ga nisbatan assosiativdir .

Isboti. Isbotni yozuvda soddalik uchun ko'paytirish amaliga nisbatan olib boramiz.

1) n=1,2 da isbotning xojati yo'q;



n=3 da esa gruppa ta'rifidagi 1)-shartda berilgan.

Faraz etaylik, n=k da teorema o'rinli bo'lsin, ya'ni n ta ko'paytuvchining ko'paytmasi qavslarni qo'yish tartibiga bog'liq bo'lmasin. U holda a1 a2 ...aк =



k

=  ai deb yoza olamiz . Bu tenglikning ikkala tomonini aк+1 ga ko'paytirsak,



i=1 k l k

(a1 a2 ...aк )  aк+1 = (  ai )  aк+1 =  ai   ai aк+1



i=1 i=1 i=l+1

l k

Endi  ai va  ai lardagi ko'paytuvchilar soni k dan kichik shuning uchun



i=1 i=l+1

bu ko'paytuvchilar uchun xossa o'rinli .


Endi l k

ai ,  ai , aк+1



i=1 i=l+1 hadlar uchun (ularni 3ta element deb) assosiativlik qonunini qo'llasak l k

ai   ai aк+1



i=1 i=l+1

ifodaga va demak (a1 a2 ...aк )  aк+1 ifodada ham uning qiymati qavslarni qo'shish tartibiga bog'liq emas degan xulosaga kelamiz.

5. a1 ,a2 , ...,aк G elementlarining ko'paytmasiga teskari bo'lgan element

ak-1ak-1-1 ...a1-1 bo'ladi. (Tekshiring). a.a...a=an deb belgilaymiz , а0 = е .

6. Agar а G bo'lsa , u holda anG, nN bo'ladi.



GRUPPALARNING GOMOMORFLIGI

Faraz etaylik , G = G; -1 va H = H; -1 - multiplikativ gruppalar berilgan bo'lsin. Agar G ni H ga akslantiruvchi h akslantirish asosiy amallarni saqlasa , ya'ni



1) a,b G учун h(аb)= h(a) h(b) ,

2) a G, h(a-1) =(h(a)) -1

shartlar bajarilsa, h ga gomomorf akslantirish , G va H gruppalarga esa gomomorf (o'xshash) gruppalar deyiladi. Agar h:G H gomomorf akslantirish bo'lib G ni H ga (ustiga) o'tkazsa h ga epimorf akslantirish deyiladi .

Agar h:G H akslantirish o'zaro bir qiymatli akslantirish bo'lib, asosiy amallarni saqlasa bunday akslantirishga izomorf akslantirish deyiladi (xossalari bir xil). Bu holda G va H gruppalarga izomorf gruppalar deyiladi va GH ko'rinishda yoziladi.

G ni G ga (ustiga) akslantiruvchi izomorf h akslantirishga avtomorfizm deyiladi.

1-teorema . Agar h:G H akslantirish G dagi binar amal ( ni saqlasa, ya'ni

a,bG, h(ab)=h(a) h(b) tenglik o'rinli bo'lsa , u holda h G gruppa-ning birlik е elementini H gruppaning birlik elementiga o'tkazadi va



h:G H gomomorf akslantirish bo'ladi.

Isboti . Faraz etaylik, е G ning bir elementi bo'lsin va u h akslantirishda е' H elementga utsin , ya'ni е' = h(е) H. е' ning H uchun birlik element ekanligini ko'rsatamiz . 1) ga asosan

h(ee)=h(e) h(e) = е' е', ikkinchi tomondan е' =h(e)=h(e e). Demak, е' е' =е', ya'ni е' H birlik element. h ning gomomorf akslantirish ekanligini ko'rsatish uchun 2) shartni qanoatlantirishni ko'rsatish yetarli.

Faraz etaylik, a G bo'lsin. U holda G gruppa bo'lgani uchun a-1G va a a-1 = e G . (1) ga asosan bunlan h(a a-1) = h(a) h(a-1)= h(e)= e' H .

Demak, a G, h(a-1) =(h(a)) -1 , ya'ni h(a) ga teskari element.

Gruppalar to'plamidagi izomorflik munosabati ekvivalentlik munosabatidir (tekshirib ko'ring ).



Misollar. 1. Q* - barcha noldan farqli rasional sonlar to'plami va Q*=

= Q* ; , -1 esa rasional sonlarning multiplikativ gruppasi bo'lsin.

Q+=Q+; , -1  - musbat rasional sonlarning multiplikativ gruppasi bo'lsin. U holda h(a)=a, h:Q* Q+ (ya'ni h:aa) gomomorf akslantirish bo'ladi.

1-shart. h(a.b)=h(a).h(b), chunki ab=ab

2-shart. h(a-1) =(h(a)) -1, a-1=a-1 lar absalyut qiymatning xossalariga asosan bajariladi.

2. R+= R+; , -1  - musbat haqiqiy sonlarning multiplikativ gruppasi, R=R ; +, -  esa haqiqiy sonlarning additiv gruppasi bo'lsin, u holda f(x)=

=log x funksiyaning yordamidagi akslantirish f: R+ R izomorf akslantirish bo'ladi, chunki log (x.y)=log x+log y, log x-1 = - log x .

3. g (x) = 2x funksiya yordamida akslantirish (ya'ni f (x)=log2 x funksiyaga teskari funksiya bilan) g:R R+ ham izomorf akslantirish bo'ladi, chunki 2x+y = 2x 2y, 2-x = (2x )-1 .


Mavzuni mustaxkamlash uchun savollar

1). Gruppa deb nimaga aytiladi ?

2). Chekli gruppaning tartibi deganda nimani tushunasiz ?

3). Additiv va multiplikativ gruppaga ta'rif bering .

4). Qism gruppa deganda nimani tushunasiz ?

5). Gruppaning normal bo'luvchisi deb nimaga aytiladi ?

6). Lagranj teoremasini ayting .

7). Faktor gruppaga ta'rif bering .

8). Gomomorf gruppalar deb qanday gruppalarga aytiladi ?

9). Izomorf gruppalar deb qanday gruppalarga aytiladi ?



11-MA'RO'ZA

MAVZU :CHIZIqLI TENGLAMALAR SISTEMASI VA TUg'RI

BURCHAKLI MATRITSALAR

R YE J A :

1.Chiziqli tenglamalar sistemalari haqidagi umumiy ma'lumotlar .

2.Ekvivalent chiziqli tenglamalar sistemalari.

3.Chiziqli tenglamalar sistemasidagi elementar almashtirishlar .

4.Tug'ri burchakli matrisalar .
ADABIYOTLAR [1,2,3 ].
Ushbu sistemaga

a11 x1 +a12 x2 + ....+ a1n xn = b1

a21 x1 +a22 x2 + ....+ a2n xn = b2

.................................................. (1)



am1 x1 +am2 x2 + ....+ amn xn = bm

n ta noma'lumli m ta chiziqli tenglamalardan to'zilgan sistema deyiladi.

Bunda aij lar koeffisiyentlar (sonlar ), x1, x2 , ..., xn noma'lumlar, b1 , b2 ,..., bm lar ozod hadlar deyiladi . ai j koeffisiyentda birinchi indeks tenglamaning nomerini, ikkinchi indeks j esa nomalumning nomerini bildiradi. Agar (1)da b1 , b2 , ... , bm lardan birortasi noldan farqli bo'lsa, (1) ga bir jinsli bo'lmagan tenglamalar sistemasi, agar b1 = b2 = ... = bm = 0 bo'lsa , (1) ga bir jinsli chiziqli tenglamalar sistemasi deyiladi. (1) ni qisqacha ai1x1 +ai2 x2 + ....+ ain xn = bi , i=1,2,3, ... , m . (2)

ko'rinishda ham yozish mumkin.

n ta haqiqiy sondan to'zilgan tartiblangan n-lik (1, 2 , ..., n) ga n- o'lchovli arifmetik vektor deyilali.

(2) ning yechimi deganda uning har bir tenglamasini to'g'ri tenglikka aylantiruvchi 1, 2 , ..., n sonlarga aytiladi.

(1) -sistemani vektor tushunchasidan foydalanib quyidagicha yozish mumkin. (1)

ning noma'lumlar oldidagi koeffisiyentlardan to'zilgan vektorustunlarini



ni а11 а12 а1n b1

А(1)= а21 , А(2)= а22 а2n b2

 , ..... , А(n) = ,


Katalog: attachments -> article
article -> Axloqning kеlib chiqishi, unda ixtiyor erkinligining ahamiyati va axloq tuzilmasi
article -> Podsho Rossiyasi tomonidan O‘rta Osiyoning bosib olinishi sabablari va bosqichlari
article -> Siyosiy mafkuralarning asosiy ko'rinishlari
article -> Mehnat sohasida ijtimoiy kafolatlar tizimi. Reja: Ijtimoiy himoya qilish tushunchasi va uning asosiy yo’nalishlari
article -> Siyosiy madaniyat va siyosiy mafkuralar Reja
article -> O’zbek Adabiyoti tarixi: Eng qadimgi adabiy yodgorliklar
article -> Ma’naviyatning tarkibiy qismlari, ularning o’zaro munosabatlari va rivojlanish xususiyatlari. Ma’naviyat, iqtisodiyot va ularning o’zaro bog’liqligi
article -> Davlatning tuzilishi
article -> Reja: Geografik o‘rni va chegeralari
article -> Yer resurslaridan foydalanish va ularni muhofaza qilish Reja: Tuproq, uning tabiat va odam hayotidagi ahamiyati. Dunyo yer resurslari va ulardan foydalanish

Download 0.82 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
davlat pedagogika
o’rta maxsus
axborot texnologiyalari
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
guruh talabasi
ta’limi vazirligi
nomidagi samarqand
toshkent davlat
toshkent axborot
haqida tushuncha
Darsning maqsadi
xorazmiy nomidagi
Toshkent davlat
vazirligi toshkent
tashkil etish
Alisher navoiy
Ўзбекистон республикаси
rivojlantirish vazirligi
matematika fakulteti
pedagogika universiteti
таълим вазирлиги
sinflar uchun
Nizomiy nomidagi
tibbiyot akademiyasi
maxsus ta'lim
ta'lim vazirligi
махсус таълим
bilan ishlash
o’rta ta’lim
fanlar fakulteti
Referat mavzu
Navoiy davlat
haqida umumiy
umumiy o’rta
Buxoro davlat
fanining predmeti
fizika matematika
malakasini oshirish
universiteti fizika
kommunikatsiyalarini rivojlantirish
jizzax davlat
davlat sharqshunoslik