Routing Information Protocol

Download 90.73 Kb.
Hajmi90.73 Kb.
  1   2
Routing Information Protocol

Routing Information Protocol (RIP) is a distance vector protocol that uses hop count as its primary metric. RIP defines how routers should share information when moving traffic among an interconnected group of local area networks (LANs).

RIP uses a distance vector algorithm to decide which path to put a packet on to get to its destination. Each RIP router maintains a routing table, which is a list of all the destinations the router knows how to reach. Each router broadcasts its entire routing table to its closest neighbors every 30 seconds. In this context, neighbors are the other routers to which a router is connected directly -- that is, the other routers on the same network segments as the selected router. The neighbors, in turn, pass the information on to their nearest neighbors, and so on, until all RIP hosts within the network have the same knowledge of routing paths. This shared knowledge is known as convergence. If a router receives an update on a route, and the new path is shorter, it will update its table entry with the length and next-hop address of the shorter path. If the new path is longer, it will wait through a "hold-down" period to see if later updates reflect the higher value as well. It will only update the table entry if the new, longer path has been determined to be stable.

If a router crashes or a network connection is severed, the network discovers this because that router stops sending updates to its neighbors, or stops sending and receiving updates along the severed connection. If a given route in the routing table isn't updated across six successive update cycles (that is, for 180 seconds) a RIP router will drop that route and let the rest of the network know about the problem through its own periodic updates. Versions There are three versions of the Routing Information Protocol: RIPv1, RIPv2 and RIPng. RIPv1-- standardized in 1988 -- is also called Classful Routing Protocol because it does not send subnet mask information in its routing updates. On the other hand, RIPv2 -- standardized in 1998 -- is called Classless Routing Protocol because it does send subnet mask information in its routing updates. RIPng is an extension of RIPv2 that was made to support IPv6.

In RIPv1, routes are decided based on the IP destination and hop count. RIPv2 advanced this method and started to include subnet masks and gateways. Furthermore, the routing table in RIPv1 is broadcast to every station on the attached network whereas RIPv2 sends the routing table to a multicast address in an effort to reduce network traffic. Additionally, RIPv2 uses authentication for security -- a feature missing from RIPv1.


RIP operates on the application layer of the OSI model. The configuration process for the Routing Information Protocol is fairly simple. Once IP addresses have been assigned to the involved computers and interfaces of routers, then developers can issue the router RIP command -- which tells the router to enable RIP -- followed by the network command -- which allows users to identify which networks they want to work with. Only the networks directly associated with the router need to be specified.
Users can also configure any port to perform the following actions:

  • Prevent RIP packets from being sent or received.

  • Receive packets in various formats.

  • Send packets formatted for each of the different RIP versions to the RIPv1 broadcast address.

Advantages of RIP include:

  • Feasible configuration

  • Easy to understand

  • Predominantly loop free

  • Guaranteed to support almost all routers

  • Promotes load balancing

Additionally, RIP is preferred over static routes due to its simple configuration and the fact that it does not require an update every time the topology changes. Unfortunately, the disadvantage of RIP is its increased network and processing overhead when compared to static routing.

Other disadvantages include:

  • Not always loop free

  • Only equal-cost load balancing is supported

  • Pinhole congestion can occur

  • Bandwidth intensive and inefficient

  • Large networks lead to slow convergence

Download 90.73 Kb.

Do'stlaringiz bilan baham:
  1   2

Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan © 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
o’rta maxsus
axborot texnologiyalari
davlat pedagogika
nomidagi toshkent
pedagogika instituti
guruh talabasi
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
toshkent axborot
nomidagi samarqand
haqida tushuncha
toshkent davlat
ta’limi vazirligi
xorazmiy nomidagi
Darsning maqsadi
vazirligi toshkent
tashkil etish
Toshkent davlat
rivojlantirish vazirligi
Alisher navoiy
matematika fakulteti
Ўзбекистон республикаси
pedagogika universiteti
sinflar uchun
bilan ishlash
maxsus ta'lim
Nizomiy nomidagi
таълим вазирлиги
tibbiyot akademiyasi
ta'lim vazirligi
o’rta ta’lim
fanlar fakulteti
kommunikatsiyalarini rivojlantirish
fanining predmeti
махсус таълим
umumiy o’rta
haqida umumiy
Referat mavzu
fizika matematika
Navoiy davlat
Buxoro davlat
universiteti fizika
ishlab chiqarish
Fuqarolik jamiyati
pedagogika fakulteti