Reja: kirish asosiy


Takrorlanuvchi algoritmlar



Download 189.5 Kb.
bet8/12
Sana28.08.2021
Hajmi189.5 Kb.
TuriПрограмма
1   ...   4   5   6   7   8   9   10   11   12

Takrorlanuvchi algoritmlar

Agar biror masalani echish uchun tuzilgan zarur bo’lgan amallar ketma- ketligining ma’lum bir qismi biror parametrga bog’lik ko’p marta qayta bajarilsa, bunday algoritm takrorlanuvchi algoritm yoki tsiklik algoritmlar deyiladi. Takrorlanuvchi algoritmlarga tipik misol sifatida odatda qatorlarning yig’indisi yoki ko’patmasini hisoblash jarayonlarini qarash mumkin. Quyidagi yig’indini hisoblash algoritmini tuzaylik.






S  12  22  32  ...........  N2


Bu yig’indini hisoblash uchun i0 da S0 deb olamiz va ii1 da SSi 2 ni hisoblaymiz. Bu erda birinchi va ikkinchi qadamlar uchun yig’indi hisoblandi va keyingi qadamda i parametr yana bittaga orttiriladi va navbatdagi raqam avvalgi yig’indi S ning ustiga qo’shiladi va bu jarayon shu tartibda to I


  1. N –berilgan bo’lsin,

  2. i0 berilsin,

  3. S0 berilsin,

  4. ii1 hisoblansin,

  5. SSi hisoblansin,


  6. i=0
    i

aks holda keyingi qatorga o’tilsin,

  1. S ning qiymati chop etilsin.


Yuqorida keltirilgan algoritm va blok sxemadan ko’rinib turibdiki amallar ketma- ketligining ma’lum qismi parametr i ga nisbatan N marta takrorlanyapti.

Endi quyidagi ko’paytmaning algoritmini va blok sxemasini tuzib

ko’raylik.(1 dan N bo’lgan sonlarning ko’paytmasini odatda P! kabi belgilanadi va faktorial deb ataladi)

P = 1 2  3 N= P!

N

P! - faktorialni quyidagi ko’rinishda ham yozish mumkin P = i

i1

Ko’paytmani hosil qilish algoritmi ham yig’indini hosil qilish algoritmiga juda o’xshash, faqat ko’paytmani hosil qilish uchun i1 da P1 deb olamiz va keyin ii1 da PP i ni hisoblaymiz. Keyingi qadamda i parametr yana bittaga orttiriladi va navbatdagi raqam avvalgi hosil bo’lgan ko’paytma P ga ko’paytiriladi va bu jarayon shu tartibda to I



  1. Бош n

    p=1
    i=1


    p=pi i=i+1

    ха in йук P
    Тамом
    N–berilgan bo’lsin,

  2. i1 berilsin,

  3. P1 berilsin,

  4. ii1 hisoblansin,

  5. PP*i hisoblansin,

  6. I

  7. P ning qiymati chop etilsin.

Yuqorida ko’rilgan yig’indi va ko’paytmalarning blok sxemalaridagi takrorlanuvchi qismlariga (aylana ichiga olingan) quyidagi sharti keyin berilgan tsiklik struktura mos kelishini ko’rish mumkin.




Yuqoridagi blok sxemalarda shartni oldin tekshiriladigan holdatda chizish mumkin edi. Masalan, yig’indining algoritmini qaraylik.



Bu blok sxemaning takrorlanuvchi qismiga quyidagi, sharti oldin berilgan tsiklik strukturaning mos qilishini ko’rish mumkin.






Blok sxemalarining takrorlanuvchi qismlarini, quyidagi parametrik tsiklik strukturasi ko’rinishida ham ifodalash mumkin

Parametrik tsikl strukturasiga misol sifatida berilgan x1,2,3,.....10 larda



y ax

a  x

funktsiyasining qiymatlarini


hisoblash blok sxemasini qarash mumkin.


Download 189.5 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
maxsus ta’lim
O’zbekiston respublikasi
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
nomidagi toshkent
guruh talabasi
davlat pedagogika
texnologiyalari universiteti
xorazmiy nomidagi
toshkent axborot
pedagogika instituti
rivojlantirish vazirligi
haqida tushuncha
toshkent davlat
Toshkent davlat
vazirligi toshkent
tashkil etish
matematika fakulteti
ta’limi vazirligi
kommunikatsiyalarini rivojlantirish
samarqand davlat
vazirligi muhammad
pedagogika universiteti
bilan ishlash
fanining predmeti
Darsning maqsadi
navoiy nomidagi
o’rta ta’lim
Ishdan maqsad
haqida umumiy
nomidagi samarqand
fizika matematika
sinflar uchun
fanlar fakulteti
maxsus ta'lim
Nizomiy nomidagi
ta'lim vazirligi
moliya instituti
universiteti fizika
Ўзбекистон республикаси
umumiy o’rta
Referat mavzu
respublikasi axborot
Toshkent axborot
таълим вазирлиги
Alisher navoiy
махсус таълим
Buxoro davlat