Ministry of higher and secondary specialized



Download 2,06 Mb.
Pdf ko'rish
Sana11.07.2022
Hajmi2,06 Mb.
#774936
Bog'liq
gamma togo (1)



MINISTRY OF HIGHER AND SECONDARY SPECIALIZED
EDUCATION OF THE REPUBLIC OF UZBEKISTAN
NATIONAL UNIVERSITY OF UZBEKISTAN
NAMED AFTER MIRZO ULUGBEK
FACULTY OF PHYSICS
Student of the F-1907 group
Khamidov Javokhir’s
COURSEWORK
on Physics of Atomic nucleus and elementary particles
on the topic of
γ
-ray spectroscopy
Received by A.A. Tuymuradov / D.I. Tuymurodov / S.A. Ashurov
Toshkent-2022


Contents
Introduction
3
1
Introduction to
γ
-ray spectroscopy
6
2
Detectors of
γ
-ray spectroscopy
11
3

ossbauer Spectroscopy
17
4
Conclusion
21
References
23
2


Introduction
γ
-rays are the highest-energy form of electromagnetic radiation, being
physically the same as all other forms , but having (in general) higher
photon energy due to their shorter wavelength. Because of this, the en-
ergy of gamma-ray photons can be resolved individually, and a gamma-ray
spectrometer can measure and display the energies of the gamma-ray pho-
tons detected.Radioactive nuclei (radionuclides) commonly emit gamma
rays in the energy range from a few keV to

10 MeV, corresponding to
the typical energy levels in nuclei with reasonably long lifetimes. Such
sources typically produce gamma-ray ”line spectra” (many photons emit-
ted at discrete energies), whereas much higher energies (upwards of 1 TeV)
may occur in the continuum spectra observed in astrophysics and elemen-
tary particle physics. The boundary between gamma rays and x-rays is
somewhat blurred, as x-rays typically refer to the high energy electronic
emission of atoms, which may extend to over 100 keV, whereas the lowest
energy emissions of nuclei are typically termed gamma rays, even though
their energies may be below 20 keV.Gamma rays are the highest-energy
form of electromagnetic radiation, being physically the same as all other
forms , but having (in general) higher photon energy due to their shorter
wavelength. Because of this, the energy of gamma-ray photons can be
resolved individually, and a gamma-ray spectrometer can measure and dis-
play the energies of the gamma-ray photons detected.Radioactive nuclei
(radionuclides) commonly emit gamma rays in the energy range from a
few keV to

10 MeV, corresponding to the typical energy levels in nuclei
with reasonably long lifetimes. Such sources typically produce gamma-ray
”line spectra” (many photons emitted at discrete energies), whereas much
higher energies (upwards of 1 TeV) may occur in the continuum spectra
observed in astrophysics and elementary particle physics. The boundary
between gamma rays and X rays is somewhat blurred, as X rays typically
refer to the high energy electronic emission of atoms, which may extend
to over 100keV,whereas the lowest energy emissions of nuclei are typically
3


termed gamma rays, even though their energies may be below 20 keV.While
a Geiger counter merely determines count rates for radiation, gamma spec-
troscopy has the ability to determine both the count rate and the energy
of the radiation. This turns out to be extremely important as different ra-
dioiosotopes emit many gammas of differing energies.A gamma spectrum
is created by taking measurements of emitted gamma-rays and processing
them. A detector could identify an unknown radioisotope by identifying
features on the gamma spectrum and comparing them to known spectra.
The implications of this are quite vast. In the field of homeland security,
for example, a detector could gather information from a man’s briefcase. If
that man had an explosive device in his briefcase,features characteristic to
explosive materials would show up on the gamma spectrum and the bomb
would not make it past security. In this lab, the spectra of seven different
sources will be measured. These spectra will be analyzed and the features
that distinguish them from other spectra will identified.
Relevance of the coursework topic
Gamma spectroscopy refers to
the process of using the energies of gamma rays to identify radionuclides
Gamma Spectrometry refers to the process of using the number of emitted
gamma rays to quantify the activity of the radionuclides.

Less expensive when compared to radiochemistry

Fast

Multinuclide analysis.
Objectives of the coursework
Our purpose in highlighting this topic is
to distinguish gamma-ray spectroscopy from other spectroscopy, to look at
its superiority, deficiency, and how it works and the general conclusion.to
provide as much detail as possible of the information in each section. Ex-
plain in which areas it is used and how to use it.High resolution enables the
spectroscopist to separate two gamma lines which are close to each other.
4


Gamma spectroscopy systems are designed and adjusted to produce sym-
metrical peaks of the best possible resolution.
Tasks of the coursework
Count the pulses from the detector.The num-
ber of pulses can be related to the activity of the radionuclides in the
sample.Measure the size of the pulses (pulse height analysis).The height of
the pulses can be related to the energy of the gamma rays. This is used
to identify the radionuclides in the sample.Computer stores, displays and
analyzes the spectra.
Volume of the coursework
Volume of the coursework organized 23 pages.In
the coursework has got content, 3 subjects of
γ
-ray spectroscopy and con-
clusion.
5


1 Introduction to
γ
-ray spectroscopy
Aerial and ground-based gamma-ray spectroscopy is employed to sup-
port geologic mapping, mineral exploration, and identification of environ-
mental contamination. Gamma rays were first detected from astronomical
sources in the 1960s, and gamma-ray astronomy is now a well-established
field of research.Gamma-ray spectroscopy is the quantitative study of the
energy spectra of gamma-ray sources, such as in the nuclear industry, geo-
chemical investigation, and astrophysics. Most radioactive sources pro-
duce gamma rays, which are of various energies and intensities.The NRL
gamma spectroscopy lab has three high-resolution gamma spectroscopy de-
tectors. All of them are high purity germanium detectors (HPGe) housed
in copper-lined lead caves to reduce background, and are used to identify
and quantify radioisotopes in samples. A typical GRSS detector channel
consists of a high-purity germanium (HPGe) semiconductor detector, a
pre-amplifier, an amplifier, a high-voltage power supply, a multi-channel
analyzer (MCA), and a computer-based acquisition and analysis system.
In modern systems, many of these components are combined into inte-
grated units. At the NRL, the Canberra Lynx system is employed, which
integrates the power supply, digital amplifier, and MCA into a single box.
The Lynx units are networked, allowing one computer to control multiple
Lynxes.Gamma rays emitted from a radioactive source that are absorbed
in the HPGe detector produce electrical pulses, and the pulse amplitude
is proportional to the energy deposited in the detector, which allows for
measurement of gamma ray energies. The MCA sorts these pulses by am-
plitude, and computer software displays a plot of the number of pulses
received at each pulse amplitude. Such a plot is called a spectrum because
it shows the spectrum of energies emitted by the source. Comparison of the
peaks found in a spectrum against a library of known radionuclide energies
and abundances allows identification of the radioactive components of a
sample. If the system efficiency is calibrated using a source with traceable
activity, the activity of those radionuclides can be quantified.Data acquisi-
6


Figure 1: Example Spectrum Plot
tion and control, as well as quantitative analysis of identified radionuclide
activity, is performed by the software package Genie 2000 from Canberra
Industries. The software provides for spectrum acquisition, storage, iso-
tope identification, and activity quantification, as well as detector system
energy and efficiency calibration. The figure 1 below shows a picture of a
GRSS system at the NRL. On the desk are the computer used for analysis
and display as well as the Lynx MCA (seen behind the keyboard), and to
the right is the detector shield that minimizes counts from background radi-
ation and a vacuum dewar filled with liquid nitrogen for keeping the HPGe
detector at its operating temperature. GRSS Calibration of a gamma-ray
spectrometer involves placing a traceable source, often with emissions at
multiple gamma-ray energies, in a repeatable position relative to the detec-
tor and acquiring a spectrum. Using the measured spectrum in conjunction
with the source activity and date from the source calibration certificate,
7


Figure 2: Gamma-ray spectroscopy system setup
the analysis software computes the efficiency of the detector at each of
the source energies for the source in that position. A polynomial curve fit
provides an efficiency curve as a function of energy.The HPGe detectors of
the GRSS at the NRL are calibrated using a NIST-traceable mixed-nuclide
point source. The first detector is a Canberra GC5019 HPGe, which has
an efficiency of 50% relative to a standard 3 inch x 3 inch NaI detector at
1332 keV, and has full width at half max (FWHM) of 1.9 keV for peaks
measured at 1332 keV. The second detector is a Canberra GC1419 HPGe,
which has an efficiency of 14% relative to a standard 3 inch
·
3 inch NaI
detector at 1332 keV, and has full width at half max (FWHM) of 1,9 keV
for peaks measured at 1332 keV. The third detector is a Canberra GC1420
HPGe, which has an efficiency of 14% relative to a standard 3 inch x 3
inch NaI detector at 1332 keV, and has full width at half max (FWHM) of
2.0 keV for peaks measured at 1332 keV. The calibration source contains
8


nine radionuclides, with gamma emissions ranging from 88 keV to 1836
keV. This provides a calibration curve that covers all the major emissions
from 22Na and 154Eu (123 keV - 1596 keV). For each peak in the source,
the stated 3-sigma uncertainty (99% confidence) in the emission rate is
3%.Calculations of sample activity take into account the efficiency of the
detector system as a function of energy, the gamma-ray emission proba-
bility for the nuclide/energy, and correction for radioactive decay during
the count. The figure below shows a sample spectrum from the calibration
measurement. The nine nuclides result in eleven full-energy peaks.The en-
ergy lost in ’freeing’ the bound electron is too small to be detected in the
overall energy of the of the electron especially since the energy resolution
of the detector is only about 10% (This means that for any energy
E
0
, on
the spectrum, the uncertainties are
E
0
±
0
,
1
E
0
). Thus the photoelectric
effect results in a peak, called the photopeak, in the photomultiplier spec-
trum at an energy equal to that of the incoming gamma ray. In Compton
scattering, the gamma ray is not absorbed, rather scattered through an
angle
θ
by an electron, which recoils and carries away some of the gamma
ray’s energy E. The scattered gamma ray then escapes from the scintilla-
tor; the probability that a gamma ray Compton scatters in a typical size
scintillator is quite small (1 % to 10%), which means you are unlikely to
detect a gamma ray that has undergone two Compton scatterings. The
gamma ray’s initial wavelength is
λ
=
hc
E
=
1240
E
(1)
nm, where E is in eV. The change in wavelength is:

λ
=
h
mc
(1

cosθ
) =
243
100000
(1

cosθ
)
(2)
where h is Planck’s constant, m is the mass of the electron and c is the
speed of light. The energy of the scattered photon is given by:
E

=
E
γ
1 +
E
mc
2
(1

cosθ
)
(3)
9


From these equations you can see that the energy of the scattered electron
is then given by =

E
e
=
E


E
γ
This is also equal to the energy loss of the
original gamma ray photon, will vary from zero (when
θ
= 0
0
) to a maxi-
mum corresponding to a wavelength shift of 0.00486 nm (when
θ
= 180
0
).
The maximum energy transferred by the photon to the electron through
Compton scattering is called the Compton edge. The energy distribution
of Compton scattered electrons is essentially a constant. So the Comp-
ton spectrum produced by a photomultiplier tube is an almost flat plateau
from zero energy up to the Compton edge where it drops off sharply (at a
rate limited by the energy resolution of the tube). The discussion above
refers to gamma rays that are Compton scattered by electrons within the
scintillator.
10


2 Detectors of
γ
-ray spectroscopy
Gamma spectroscopy detectors are passive materials that are able to in-
teract with incoming gamma rays. The most important interaction mecha-
nisms are the photoelectric effect, the Compton effect, and pair production.
Through these processes, the energy of the gamma ray is absorbed and con-
verted into a voltage signal by detecting the energy difference before and
after the interaction, in a scintillation counter, the emitted photons us-
ing a photomultiplier). The voltage of the signal produced is proportional
to the energy of the detected gamma ray. Common detector materials
include sodium iodide (NaI) scintillation counters and high-purity germa-
nium detectors.To accurately determine the energy of the gamma ray, it is
advantageous if the photoelectric effect occurs, as it absorbs all of the en-
ergy of the incident ray. The output from the scintillation counter goes to
a Multichannel Analyzer which processes and formats the data.Absorbing
all the energy is also possible when a series of these interaction mechanisms
take place within the detector volume. With Compton interaction or pair
production, a portion of the energy may escape from the detector volume,
without being absorbed. The absorbed energy thus gives rise to a signal
that behaves like a signal from a ray of lower energy. This leads to a spec-
tral feature overlapping the regions of lower energy. Using larger detector
volumes reduces this effect.The main components of a gamma spectrom-
eter are the energy-sensitive radiation detector and the electronic devices
that analyse the detector output signals, such as a pulse sorter ( multi-
channel analyzer). Additional components may include signal amplifiers,
rate meters, peak position stabilizers, and data handling devices.Gamma
spectroscopy systems are selected to take advantage of several performance
characteristics. Two of the most important include detector resolution and
detector efficiency.Data acquisition.The voltage pulses produced for every
gamma ray that interacts within the detector volume are then analyzed
by a multichannel analyzer (MCA). It takes the transient voltage signal
and reshapes it into a Gaussian or trapezoidal shape. From this shape,
11


Figure 3:
Laboratory equipment for determination of
γ
-radiation spectrum
with a scintillation counter.
the signal is then converted into a digital form. In some systems, the
analog-to-digital conversion is performed before the peak is reshaped. The
analog-to-digital converter (ADC) also sorts the pulses by their height into
specific bins, or channels. Each channel represents a specific range of en-
ergy in the spectrum, the number of detected signals for each channel
represents the spectral intensity of the radiation in this energy range. By
changing the number of channels, it is possible to fine-tune the spectral
resolution and sensitivity.Gamma rays detected in a spectroscopic system
produce peaks in the spectrum. These peaks can also be called lines by
analogy to optical spectroscopy. The width of the peaks is determined by
12


Figure 4:
The gamma-ray spectrum of natural uranium.
the resolution of the detector, a very important characteristic of gamma
spectroscopic detectors, and high resolution enables the spectroscopist to
separate two gamma lines that are close to each other., showing about a
dozen discrete lines superimposed on a smooth continuum, allows one to
identify the nuclides
226
Ra
,
214
Pb
, and
214
Bi
of the uranium decay chain.
Gamma spectroscopy systems are designed and adjusted to produce sym-
metrical peaks of the best possible resolution. The peak shape is usually
a Gaussian distribution. In most spectra the horizontal position of the
peak is determined by the gamma ray’s energy, and the area of the peak
is determined by the intensity of the gamma ray and the efficiency of the
detector.The most common figure used to express detector resolution is
full width at half maximum (FWHM). This is the width of the gamma ray
peak at half of the highest point on the peak distribution. Resolution fig-
ures are given with reference to specified gamma ray energies. Resolution
13


can be expressed in absolute ( eV or MeV) or relative terms. For example,
a sodium iodide (NaI) detector may have a FWHM of 9.15 keV at 122
keV, and 82.75 keV at 662 keV. These resolution values are expressed in
absolute terms. To express the resolution in relative terms, the FWHM in
eV or MeV is divided by the energy of the gamma ray and usually shown
as percentage. Using the preceding example, the resolution of the detector
is 7.5% at 122 keV, and 12.5% at 662 keV. A germanium detector may
give resolution of 560 eV at 122 keV0.46%.Most radioactive sources produce gamma rays, which are of various
energies and intensities. Gamma rays frequently accompany the emission
of alpha and beta radiation. When these emissions are detected and an-
alyzed with a spectroscopy system, a gamma-ray energy spectrum can be
produced. Gamma rays from radioactive decay are in the energy range
from a few keV to

8 MeV, corresponding to the typical energy levels
in nuclei with reasonably long lifetimes. As was written, they are pro-
duced by the decay of nuclei as they transition from a high energy state
to a lower state. A detailed analysis of this spectrum is typically used
to determine the identity and quantity of gamma emitters present in a
sample, and is a vital tool in radiometric assay. The gamma spectrum is
characteristic of the gamma-emitting nuclides contained in the source.In
general, gamma spectroscopy is the study of the energy spectra of gamma
ray sources, such as in the nuclear industry, geochemical investigation, and
astrophysics. Spectroscopes, or spectrometers, are sophisticated devices
designed to measure the spectral power distribution of a source. The inci-
dent radiation generates a signal that allows to determine the energy of the
incident particle.Pulse-Height Analyzer Principle: Three pulses,1,2,and 3
are detected at different times.Two discriminators emit a counting signal
if their set voltage-level is reached by a pulse. Pulse 2 triggers the Lower
Level
E
L
but not the Upper Level
E
U
. Pulse 2 is thus counted into the
spectral region denoted as P. The anti-coincidence counter prevents a pulse
from being sorted into more than one region. Detector efficiency- not all
gamma rays emitted by the source that pass through the detector will
14


Figure 5:
Pulse-Height Analyzer Principle
produce a count in the system. The probability that an emitted gamma
ray will interact with the detector and produce a count is the efficiency of
the detector. High-efficiency detectors produce spectra in less time than
low-efficiency detectors. In general, larger detectors have higher efficiency
than smaller detectors, although the shielding properties of the detector
material are also important factors. Detector efficiency is measured by
comparing a spectrum from a source of known activity to the count rates
in each peak to the count rates expected from the known intensities of each
gamma ray.Efficiency, like resolution, can be expressed in absolute or rela-
tive terms. The same units are used ( percentages); therefore, the spectro-
scopist must take care to determine which kind of efficiency is being given
for the detector. Absolute efficiency values represent the probability that a
gamma ray of a specified energy passing through the detector will interact
and be detected. Relative efficiency values are often used for germanium
detectors, and compare the efficiency of the detector at 1332 keV to that
15


of NaI detector (1
.
2
·
10

3
CP S/Bq
at 25 cm). Relative efficiency val-
ues greater than one hundred percent can therefore be encountered when
working with very large germanium detectors.The energy of the gamma
rays being detected is an important factor in the efficiency of the detector.
An efficiency curve can be obtained by plotting the efficiency at various
energies. This curve can then be used to determine the efficiency of the de-
tector at energies different from those used to obtain the curve. High-purity
germanium (HPGe) detectors typically have higher sensitivity.If a gamma
spectrometer is used for identifying samples of unknown composition, its
energy scale must be calibrated first. Calibration is performed by using
the peaks of a known source, such as
137
Cs
or
60
Co
. Because the channel
number is proportional to energy, the channel scale can then be converted
to an energy scale. If the size of the detector crystal is known, one can
also perform an intensity calibration, so that not only the energies but also
the intensities of an unknown source or the amount of a certain isotope in
the source—can be determined.Because some radioactivity is present ev-
erywhere (background radiation), the spectrum should be analyzed when
no source is present. The background radiation must then be subtracted
from the actual measurement. Lead absorbers can be placed around the
measurement apparatus to reduce background radiation.For incident pho-
ton energies E larger than two times the rest mass of the electron (1.022
MeV), pair production can occur. The resulting positron annihilates with
one of the surrounding electrons, typically producing two photons with 511
keV. In a real detector (detector of finite size) it is possible that after the
annihilation: Both photons deposit their energy in the detector.One of the
two photons escapes the detector and only one of the photons deposits its
energy in the detector, resulting in a peak with
E
= 511
keV
, the single
escape peak. Both photons escape the detector, resulting in a peak with
E
= 511
keV
, the double escape peak.The above Am-Be-source spectrum
shows an example of single and double escape peak in a real measurement.
16


3 M¨
ossbauer Spectroscopy
In 1957 Rudolf M¨
ossbauer achieved the first experimental observation of
the resonant absorption and recoil-free emission of nuclear
γ
-rays in solids
during his graduate work at the Institute for Physics of the Max Planck
Institute for Medical Research in Heidelberg Germany. M¨
ossbauer received
the 1961 Nobel Prize in Physics for his research [10] in resonant absorption
of
γ
-radiation and the discovery of recoil-free emission a phenomenon that
is named after him. The M¨
ossbauer effect is the basis of M¨
ossbauer spec-
troscopy.The M¨
ossbauer effect can be described very simply by looking at
the energy involved in the absorption or emission of a
γ
-ray from a nucleus.
When a free nucleus absorbs or emits a
γ
-ray to conserve momentum the
nucleus must recoil, so in terms of energy:
E
γ
=
E
nuclear

E
recoil
(4)
When in a solid matrix the recoil energy goes to zero because the effective
mass of the nucleus is very large and momentum can be conserved with
negligible movement of the nucleus. So, for nuclei in a solid matrix:
E
γ
=
E
nuclear
(5)
This is the M¨
ossbauer effect which results in the resonant absorption/emis-
sion of
γ
-rays and gives us a means to probe the hyperfine interactions of an
atoms nucleus and its surroundings.A M¨
ossbauer spectrometer system con-
sists of a
γ
-ray source that is oscillated toward and away from the sample
by a “M¨
ossbauer drive”, a collimator to filter the
γ
-rays, the sample, and
a detector.Figure 7 hows the two basic set ups for a M¨
ossbauer spectrom-
eter. The M¨
ossbauer drive oscillates the source so that the incident
γ
-rays
hitting the absorber have a range of energies due to the doppler effect. The
energy scale for M¨
ossbauer spectra is generally in terms of the velocity of
the source in mm/s. The source shown (
57
Co
) is used to probe
57
Fe
in iron
containing samples because
57
Co
decays to
57
Fe
emitting a
γ
-ray of the
right energy to be absorbed by
57
Fe
. To analyze other M¨
ossbauer isotopes
17


other suitable sources are used. Fe is the most common element examined
with M¨
ossbauer spectroscopy because its
57
Fe
isotope is abundant enough,
has a low energy
γ
-ray, and a long lived excited nuclear state which are
the requirements for observable M¨
ossbauer spectrum. Other elements that
Figure 6:
Schematic of M¨
ossbauer Spectrometers.
have isotopes with the required parameters for M¨
ossbauer probing are seen
in Table 1
Table 1:
Elements with known M¨
ossbauer isotopes and most commonly ex-
amined with M¨
ossbauer spectroscopy.
Most commonly examined elements
Fe,Ru,W,Ir,Au,Sn,Sb,Te
Elements that exhibit M¨
ossbauer effect
Tm,Lu,Th,Pa,U,Pu,Am

ossbauer Spectra The primary characteristics looked at in M¨
ossbauer
spectra are isomer shift , quadrupole splitting , and magnetic splitting.
These characteristics are effects caused by interactions of the absorbing
18


Figure 7:
Fe atoms in minerals are predictably found in coordination poly-
hedra of appropriate size based on radius ratios.
nucleus with its environment.Isomer shift is due to slightly different nu-
clear energy levels in the source and absorber due to differences in the
s-electron environment of the source and absorber. The oxidation state
of an absorber nucleus [5] is one characteristic that can be determined
by the IS of a spectra. For example due to greater d electron screening
Fe
2+
has less s-electron density than
Fe
3+
at its nucleus which results in
a greater positive IS for
Fe
2+
.For absorbers with nuclear angular momen-
tum quantum number
I

1
2
the non-spherical charge distribution results
in quadrupole splitting of the energy states. For example Fe with a tran-
sition from
I
= 1
/
2 to 3
/
2 will exhibit doublets of individual peaks in
the M¨
ossbauer spectra due to quadrupole splitting of the nuclear states as
shown in red in Figure 7.In the presence of a magnetic field the interac-
tion between the nuclear spin moments with the magnetic field removes
all the degeneracy of the energy levels resulting in the splitting of energy
levels with nuclear spin
I
into 2
I
+ 1 sublevels. Using Fe for an example
again, magnetic splitting will result in a sextet as shown in green in Figure
7.Notice that there are 8 possible transitions shown, but only 6 occur.The
transitions represented as black arrows do not occur[3]. The top half of
Figure7 plots the isomer shift and quadrupole splitting of several miner-
19


Figure 8:
Characteristics of M¨
ossbauer spectra related to nuclear energy
levels.
als whose iron valence state and coordination number are independently
known, and the bottom of the figure shows the resultant groupings.
Fe
3+
occurs primarily in 4- or 6-coordination with oxygen, while
Fe
2+
may be
rarely 4- or 5- coordinated, commonly 6-coordinated, and occasionally 8-
coordinated with oxygen. Fe in 4-fold coordination with sulfur has subtly
different parameters due to the effects of covalent bonding. Variations in

ossbauer parameters that are characteristic of each type of coordination
polyhedron can be related to polyhedral site distortion; a thoughtful dis-
cussion of this topic can be found in Burns and Solberg.
20


4 Conclusion
Gamma-ray spectroscopy
is a quick and nondestructive analytical tech-
nique that can be used to identify various radioactive isotopes in a sam-
ple.A gamma-ray spectrometer (GRS) is an instrument for measuring the
distribution of the intensity of gamma radiation versus the energy of each
photon.
Principle of Gamma-ray spectroscopy[6]:

Most radioactive sources produce gamma rays, which are of various
energies and intensities.

When these emissions are detected and analyzed with a spectroscopy
system, a gamma-ray energy spectrum can be produced.

In gamma-ray spectroscopy, the energy of incident gamma-rays is
measured by a detector.

By comparing the measured energy to the known energy of gamma-
rays produced by radioisotopes, the identity of the emitter can be
determined [3].

A detailed analysis of this spectrum is typically used to determine
the identity and quantity of gamma emitters present in a gamma
source and is a vital tool in the radiometric assay.

The gamma spectrum is characteristic of the gamma-emitting nu-
clides contained in the source.
Scintillation detector[6]:

Scintillation is the process by which some material, be it a solid,
liquid, or gas, emits light in response to incident ionizing radiation.

In practice, this is used in the form of a single crystal of sodium
iodide that is doped with a small amount of thallium, referred to as
NaI(Tl).
21



This crystal is coupled to a photomultiplier tube which converts the
small flash of light into an electrical signal through the photoelectric
effect.

This electrical signal can then be detected by a computer.
Semiconductor detector:

A semiconductor accomplishes the same effect as a scintillation de-
tector, conversion of gamma radiation into electrical pulses, except
through a different route.

In a semiconductor, there is a small energy gap between the valence
band of electrons and the conduction band.

When a semiconductor is hit with gamma-rays, the energy imparted
by the gamma-ray is enough to promote electrons to the conduction
band.

This change in conductivity can be detected and a signal can be
generated correspondingly.

Germanium crystals doped with lithium, Ge(Li), and high-purity
germanium (HPGe) detectors are among the most common types.
Applications of Gamma-ray spectroscopy

Nuclear structure

Nuclear transitions and nuclear reactions

In space research such as water detection on planets

Used for the elemental and isotopic analysis of airless bodies in the
solar system, especially the moon and mars.

GRS instruments supply data on the distribution and abundance of
chemical elements
22


References
1. https://en.wikipedia.org/wiki/Gamma-spectroscopy
2. https://www.physlab.org/wp-content/uploads/GammaExp-min.pdf
3. https://archive.cnx.org/content/principles-of-gamma-ray-spectroscopy
4. https://owlcation.com/stem/Gamma-Ray-Spectroscopy
5. https://stfc.ukri.org/files/a-bruce-gamma-spectroscopy/
6. https://microbenotes.com/gamma-ray-spectroscopy/
7. Gilmore and Hemingway, Practical Gamma-Ray Spectrometry
8. Knoll, Radiation Detection and Measurement
9. Leo, Techniques for Nuclear and Particle Detection
10. R.L. M¨
ossbauer, Naturwissenschaften, 1958, 45, 538
23

Document Outline


Download 2,06 Mb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish