Лабораторная работа№1 Решение системы линейных уравнений методом квадратных корней



Download 0,55 Mb.
bet1/4
Sana16.03.2022
Hajmi0,55 Mb.
#496129
TuriЛабораторная работа
  1   2   3   4
Bog'liq
ЛАБ1 Решение системы линейных уравнений методом квадратных корней


Лабораторная работа№1
Решение системы линейных уравнений методом квадратных корней
Цель и содержание: моделирования объектов, описываемых системами алгебраических уравнений, приобретение навыков построения таких моделей в системе компьютерной математики MATLAB.
Организационная форма занятий: решение проблемных задач, разбор конкретных ситуаций
Вопросы для обсуждения на лабораторном занятии:построение моделей объектов, описываемых системами алгебраических уравнений.

Теоретическое обоснование


Изучите теоретический материал по данной теме, используя сведения, приведенные ниже, и литературу [5, 22]
Приближенное решение широкого круга вычислительных задач сводится к решению систем линейных уравнений. Теория решения систем линейных уравнений хорошо разработана,имеется большое число разнообразных программных средств для решения самых различных систем уравнений, в том числе плохо обусловленных, блочных, с разреженными матрицами и т.д.
Методы решения линейных систем уравнений обычно делят на две большие группы. К первой группе относятсяточные методы, которые позволяют для любых систем найти точные значения неизвестных после конечного числа точно выполняемых арифметических операций.
Ко второй группе относят приближенные методы, которые являются итерационными, так как решения в них получают в результате процесса приближений. Точные методы применяются для задач небольших размерностей (~102), а для задач большой размерности используют итерационные методы.
Особое место среди них занимают вероятностные методы, которые полезны лишь в случаях очень высокой размерности систем.
Моделирование объектов, описываемых системами линейных уравнений, можно осуществлять путем сведения системы линейных уравнений к эквивалентной системе дифференциальных уравнений [2].
Пусть исследуемый объект описывается системой уравнений:


(2.1)


или в матричном виде: Ах=b, где А–квадратная матрица размером п п,bи х – векторы размером п (п – размерность системы).
Заменим данную систему алгебраических уравнений эквивалентной системой дифференциальных уравнений:


(2.2)


Дляэквивалентностисистемыравнений2.1 и 2.2 необходимо, чтобы решениесистемыдифференциальных уравнений 2.2 было затухающим, т.е. как только все производные затухнут , будет получено решение системы уравнений 2.1: { }.
Достаточнымусловием,обеспечивающим затухающее
решение,являетсяположительнаяопределенностьматрицы
коэффициентовлинейнойсистемыуравнений. Этовозможно,в частности, при условии, когда

Пример 2.1. Найти решение системы линейных алгебраических уравнений:
(2.3)
Точное решение системы уравнений найти с помощью инструментов Excel и Mathcad. Свести систему линейных уравнений к эквивалентной системе дифференциальных уравнений и найти решение в MATLAB, с помощью пакета Simulink.

Download 0,55 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish