Ii bob. Simpleks usuli va uning dasturiy ta’minoti chiziqli programmalash va simpleks usuli



Download 142,16 Kb.
bet2/5
Sana19.08.2021
Hajmi142,16 Kb.
#151313
1   2   3   4   5
Bog'liq
Buxoro davlat universitetidsfdsfsdf
Eratosfen G’alviri yordamida Tub sonlarni aniqlsh777777, Fuqaro ximoyasi, 2 5204047160567401512aaaaaaaaaaaaaaaa, 2 5204047160567401512aaaaaaaaaaaaaaaa, 2 5204047160567401512aaaaaaaaaaaaaaaa, Buxoro davlat universitetidsfdsfsdf, Chiziqli operatorlar spektral nazariyasi, Buxoro davlat universitetidsfdsfsdf
xi і0 (i=1,2,…m) (2.1.2)

Masaladagi b) shart uning maqsadini aniqlaydi. Demak masalaning maqsadi mahsulotlarni realizatciya qilishdan korxonaning oladigan umumiy daromadini maksimallashtirishdan iborat va uni

y = c1x1 +c2x2+ … + cmxm (2.1.3)

chiziqli funksiya orqali ifodalash mumkin. Shartga ko’ra y®max. Bu shartni Ymax ko’rinishda belgilaymiz.

Chiziqli dasturlash masalasi umumiy holda 2.1.1-1.1.3 kabi ifodalanadi.

2.1.1-1.1.2 shartlarni qanoatlantiruvchi noma`lumlarning shunday qiymatlarini topish kerakki, ular (2.1.3) chiziqli funksiyaga minimal (maksimal) qiymat bersin. Masalaning (2.1.1) va (2.1.2) shartlari uning chegaraviy shartlari deb, (2.1.3) chiziqli funksiya esa masalaning maqsadi yoki maqsad funksiyasi deb ataladi.

Masaladagi barcha chegaralovchi shartlar va maqsad funksiya chiziqli ekanligi ko’rinib turibdi. Shuning uchun ham (2.1.1)–(2.1.3) masala chiziqli dasturlash masalasi deb ataladi.

Konkret masalalarda (2.1.1) shart tenglamalar sistemasidan, «і» yoki «Ј» ko’rinishdagi tengsizliklar sistemasidan yoki aralash sistemadan iborat bo’lishi

mumkin. Lekin ko’rsatish mumkinki, (2.1.1)–(2.1.3) ko’rinishdagi masalani osonlik bilan quyidagi ko’rinishga keltirish mumkin:


(2.1.4)

x1 і 0, x2 і 0, …, xn і 0, (2.1.5)



Ymin = c0 + c1x1 + c2x2+ … + cnxn (2.1.6)

(2.1.4)-(2.1.6) ko’rinish chiziqli dasturlash masalasining kanonik ko’rinishi deb ataladi. (2.1.4)–(2.1.6) masala vektorlar yordamida quyidagicha ifodalash mumkin:

P1x1 + P2x2+ … + Pnxn = P0 (2.1.7)

X і 0 (2.1.8)

Ymin = CX (2.1.9)




bu yerda

S = (C1, C2, …, Cn) – vektor–qator.

X = (X1, X2, …, Xn) – vektor–ustun.

(2.1.4)-(2.1.6) masalaning matritca ko’rinishdagi ifodasi quyidagicha yoziladi:

AX = P0, (2.1.10)

X і 0, (2.1.11)

Ymin = CX, (2.1.12)

bu erda S = (C1, C2, …, Cn) – qator vektor, A = (aij) – (4) sistema koeffitcientlaridan tashkil topgan matritca; X = (X1, X2, …, Xn) va P0 = (b1, b2, …, bn) – ustun vektorlar.

(2.1.4)-(2.1.6) masalani yig’indilar yordamida ham ifodalash mumkin:

(2.1.13)

Chiziqli dasturlash masalalarini yechishni simpleks usuli bir tayanch rejasidan boshqa tayanch rejasiga o’tishga asoslangan bo’lib, qaysikim bu yerda maqsad funksiyasini qiymati oshib boradi. Simpleks usulining mohiyati shundan iboratki, dastavval CHDMdagi barcha shartlarni qanoatlantiruvchi mumkin bo’lgan tayanch reja topiladi.

Boshlang’ich tayanch reja chekli sondagi etap (simpleks)dan keyin optimal rejani hosil qilish yo’lini ko’rsatadi va har bir navbatdagi simpleks oldingisiga nisbatan optimal rejaga yaqinroq rejani beradi. Masalani yechish jarayoni optimal yechim topilguncha yoki masalaning maqsad funksiyasi chekli maksimum (minimum)ga ega emasligi aniqlanguncha davom ettiriladi.

Demak, CHDM simpleks usuli bilan yechilganda, berilgan masalaning barcha shartlarini qanoatlantiruvchi boshlang’ich tayanch reja topiladi. Bu boshlang’ich tayanch rejaga asoslanib chekli sondagi simplekslar (bir simpleks jadvalidan, navbatdagi simpleks jadvaliga o’tish) bilan navbatdagi yangi tayanch rejlarni topish va ularning optimalligini tekshirib borish, masalaning optimal yechimga ega ekanligi aniqlanguncha davom ettiriladi.

Simpleks usuli CHDMning quyidagi xossalariga asoslangan:

-agar masala ekstremumga ega bo’lsa u yagona bo’ladi, ya’ni maksimum yoki minimumlardan biri bo’ladi.

- CHDM ning hamma rejalari (yechimlari) to’plami qavariqdir;

- maqsad funksiyasi o’zining maksimal yoki minimal qiymatiga qavariq ko’p yoqlining qirralarining birida erishadi;

- qavariq ko’p yoqlining har bir qirrasi CHDMning tayanch rejasi bo’ladi.

Bizga quyidagi CHDM berilgan bo’lsin:

Zmax =c1x1+c2x2+...+ cnxn (2.1.14)




Download 142,16 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2022
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
axborot texnologiyalari
ta’lim vazirligi
zbekiston respublikasi
maxsus ta’lim
O’zbekiston respublikasi
nomidagi toshkent
guruh talabasi
o’rta maxsus
toshkent axborot
texnologiyalari universiteti
xorazmiy nomidagi
davlat pedagogika
rivojlantirish vazirligi
pedagogika instituti
vazirligi muhammad
haqida tushuncha
kommunikatsiyalarini rivojlantirish
respublikasi axborot
toshkent davlat
tashkil etish
vazirligi toshkent
Toshkent davlat
bilan ishlash
O'zbekiston respublikasi
matematika fakulteti
Ishdan maqsad
o’rta ta’lim
ta’limi vazirligi
fanining predmeti
saqlash vazirligi
moliya instituti
haqida umumiy
pedagogika universiteti
fanlar fakulteti
fanidan tayyorlagan
umumiy o’rta
samarqand davlat
ishlab chiqarish
fanidan mustaqil
Toshkent axborot
universiteti fizika
fizika matematika
uzbekistan coronavirus
Darsning maqsadi
sinflar uchun
Buxoro davlat
coronavirus covid
Samarqand davlat
koronavirus covid
sog'liqni saqlash