Funksiyaning limiti



Download 49.16 Kb.
bet1/3
Sana02.08.2021
Hajmi49.16 Kb.
  1   2   3

Aim.uz

Funksiyaning limiti
Agar ixtiyoriy son uchun shunday sonni topish mumkin bo’lsaki, va tengsizlikni qanoatlantiruvchi x ning barcha qiymatlari uchun tengsizlik bajarilsa, x argument ga intilganda, f(x) funksiya A songa teng limitga ega deyiladi va u

ko’rinishda yoziladi.

A son f(x) funksiyaning nuqtadagi limiti deb ham aytiladi.

|x-a|< tengsizlik qo’sh tengsizlikka teng kuchli. ixtiyoriy musbat son bo’lganda ( ; ) oraliq nuqtaning atrofi deyiladi.

Agar x argument ga intilganda, f(x) funksiyaning limiti A ga teng, ya’ni  bo’lsa, u holda nuqtadagi f(x) funksiyaning A limit qiymati bilan xususiy qiymati orasida quyidagi hollar bo’lishi mumkin.

1. da f (x) funksiyaning limiti A ga teng bo’lib, bu paytda f(x) funksiyaning f(a) xususiy qiymati mavjud bo’lmasligi mumkin.

2. da f (x) funksiya A limitga ega va f (x) funksiyaning f(a) xususiy qiymati mavjud, lekin f(a) xususiy qiymat funksiyaning A limit qiymatiga teng emas.

3. da f (x) funksiyaning limiti A ga teng, f(x) funksiyaning xususiy qiymati mavjud va u funksiyaning A limit qiymatiga teng.

Agar ixtiyoriy son uchun shunday sonni topish mumkin bo’lsaki, tengsizlikni qanoatlantiruvchi x ning barcha qiymatlari uchun

tengsizlik bajarilsa, x argument a ga o’ng tomondan intilganda f (x) funksiya A songa teng o’ng limitga ega deyiladi va



yoki

ko’rinishda yoziladi.

Agar ixtiyoriy son uchun shunday sonni topish mumkin bo’lsaki, tengsizlikni qanoatlantiruvchi x ning barcha qiymatlari uchun

tengsizlik bajarilsa, x argument ga chap tomondan intilganda, f(x) funksiya A songa teng chap limitga ega deyiladi va

 yoki 

kabi yoziladi.

Chap va o’ng limitlar bir tomonlama limitlar deyiladi.

Agar bo’lganda f (x) funksiyaning chap va o’ng limitlari mavjud bo’lib,ular bir-biriga teng bo’lsa, u holda f (x) funksiyaning nuqtadagi limiti ham majud va bu limit ham o’sha limitga teng bo’ladi.

Agar ixtiyoriy katta son uchun shunday sonni topish mumkin bo’lsaki, va tengsizlikni qanoatlantiruvchi x ning barcha qiymatlari uchun

( )

tengsizlik bajarilsa, u holda x argument ga intilganda, funksiya limitga ega deyiladi va



( )

kabi yoziladi.

Agar ixtiyoriy E>0 son uchun shunday sonni topish mumkin bo’lsaki, va tengsizlikni qanoatlantiruvchi ning barcha qiymatlari uchun tengsizlik bajarilsa, u holda argument ga intilganda, funksiya limitga ega deyiladi va

kabi yoziladi.

Agar ixtiyoriy son uchun shunday sonni topish mumkin bo’lsaki, │x│> k tengsizlikni qanoatlantiruvchi x ning barcha qiymatlari uchun

tengsizlik bajarilsa, u holda x argument ∞ ga intilganda, f(x) funksiya A songa teng limitga ega deyiladi va



kabi yoziladi. A funksiyaning cheksizlikdagi limiti deyiladi.

Agar ixtiyoriy son uchun shunday sonni topish mumkin bo’lsaki, ( ) tengsizlikni qanoatlantiruvchi x ning barcha qiymatlari uchun tengsizlik bajarilsa, u holda argument ( ) ga intilganda, f(x) funksiya A songa teng limitga ega deyiladi va

( )

kabi yoziladi.

Agar (x)= 0 bo’lsa, (x) funksiya cheksiz kichik funksiya deyiladi ( – ixtiyoriy son).

Agar bo’lsa, funksiya cheksiz katta funksiya deyiladi.

Agar ixtiyoriy katta son uchun shunday sonni topish mumkin bo’lsaki, tengsizlikni qanoatlantiruvchi x ning barcha qiymatlari uchun tengsizlik bajarilsa, u holda f(x) funksiya cheksiz katta funksiya deyiladi va ∞ kabi yoziladi.

Agar argument ga intilganda funksiyaning limiti mavjud bo’lsa, bu limit yagona bo’ladi.

Agar argument ga intilganda f(x) va (x) funksiyalarning limitlari mavjud bo’lsa, u holda quyidagi limitlar ham mavjud bo’ladi.

1.

2.

3. = ( (x)

4. k = k f(x) (k - o’zgarmas son).

=1 limit muhim limit deb ataladi va u muhim tatbiqlarga ega.


Download 49.16 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
maxsus ta’lim
O’zbekiston respublikasi
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
guruh talabasi
nomidagi toshkent
davlat pedagogika
texnologiyalari universiteti
xorazmiy nomidagi
toshkent axborot
pedagogika instituti
haqida tushuncha
rivojlantirish vazirligi
toshkent davlat
Toshkent davlat
vazirligi toshkent
tashkil etish
matematika fakulteti
ta’limi vazirligi
samarqand davlat
kommunikatsiyalarini rivojlantirish
bilan ishlash
pedagogika universiteti
vazirligi muhammad
fanining predmeti
Darsning maqsadi
o’rta ta’lim
navoiy nomidagi
haqida umumiy
Ishdan maqsad
moliya instituti
fizika matematika
nomidagi samarqand
sinflar uchun
fanlar fakulteti
Nizomiy nomidagi
maxsus ta'lim
Ўзбекистон республикаси
ta'lim vazirligi
universiteti fizika
umumiy o’rta
Referat mavzu
respublikasi axborot
таълим вазирлиги
махсус таълим
Alisher navoiy
Toshkent axborot
Buxoro davlat