Energetika va sanoatni axborotlashtirish



Download 401.85 Kb.
Sana02.09.2021
Hajmi401.85 Kb.

O`ZBEKISTON RESPUBLIKASI

OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI

NAMANGAN MUHANDISLIK QURILISH INSTITUTI

ENERGETIKA VA SANOATNI AXBOROTLASHTIRISH” FAKULTETI

INFORMATIKA VA AXBOROT TEXNOLOGIYALARI” KAFEDRASI

KOMPYUTER TIZIMLARI VA ULARNING DASTURIY TA’MINOTI 8- GURUH MAGISTR TALABASI

ERGASHEVA SADOQATXON SHARIFBEK QIZINING

MUSTAQIL

ISHI

Namangan – 2021 yil

Mavzu: Uchinchi tartibli Determinantni hisoblash algoritmi va dasturini tuzish

Reja


  1. Asosiy tushunchalar

  2. Masalaning qo`yilishi

  3. Masalani yechish algoritmi

  4. Blok sxemasi

  5. Masalani dasturiy ta`minotda yechish

  6. Natijani taqqoslash

Xulosa

        1. Asosiy tushunchalar

Uchinchi tartibli determinant. Uchinchi tartibli kvadrat matritsani, ya‟ni 3 × 3 ta sondan iborat ushbu jadvalni qaraymiz:

Bu matritsaning uchinchi tartibli determinant deb quyidagi



songa aytiladi. Uchinchi tartibli determinant bunday belgilanadi



Shunday qilib,



Determinantni tashkil qiladigan sonlar uning elementlari deb ataladi. uchinchi tartibli determinant uchta satrga va uchta ustunga ega. Istalgan elementning belgilanishida birinchi indeks shu element turgan satr tartibini, ikkinchi indeks esa ustun tartibini ko‟rsatadi. 𝑎11, 𝑎12, a13 elementlar birinchi satrni, 𝑎21, 𝑎22, a23 ikkinchi satrni, 𝑎31, 𝑎32, a33 elementlar uchinchi satrni tashkil etadi. 𝑎11, 𝑎21, a31 elementlar birinchi ustunni, 𝑎12, 𝑎22, a32 elementlar ikkinchi, 𝑎13, 𝑎23, a33 elementlar uchinchi ustunni tashkil etadi. 𝑎11 , 𝑎22, a33 elementlar joylashgan diagonal determinantning bosh diagonali, 𝑎31, 𝑎22, a13 elementlar joylashgan diagonal esa yordamchi diagonali deb ataladi.



        1. Masalani qo’yilishi

3 – tartibli determinantni hisoblovchi dastur tuzing.



        1. Masalani yechish algoritmi

3 – Tartibli determinant

Bu formulani eslab qolish uchun biz uchburchak qoidasidan foydalanishimiz mumkin.





        1. Blok sxemasi



TAMOM

S

S:=a00*a11*a22+a10*a02*a21+a01*a12*a20-a02*a11*a20-a00*a12*a21-a10*a01*a22

S, a00, a01, a02, a10, a11, a12, a20, a21, a22

BOSHLASH


5. Dasturiy taminoti

unit Determinant;

interface

uses


Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls;

type

TForm1 = class(TForm)



lbl1: TLabel;

lbl2: TLabel;

lbl3: TLabel;

lbl4: TLabel;

lbl5: TLabel;

lbl6: TLabel;

lbl7: TLabel;

lbl8: TLabel;

lbl9: TLabel;

edt1: TEdit;

edt2: TEdit;

edt3: TEdit;

edt4: TEdit;

edt5: TEdit;

edt6: TEdit;

edt7: TEdit;

edt8: TEdit;

edt9: TEdit;

lbl10: TLabel;

btn1: TButton;

lbl11: TLabel;

lbl12: TLabel;

procedure btn1Click(Sender: TObject);

private


{ Private declarations }

public


{ Public declarations }

end;


var

Form1: TForm1;

implementation

{$R *.dfm}

var a00,a01,a02,a10,a11,a12,a20,a21,a22,s: Integer;

procedure TForm1.btn1Click(Sender: TObject);

begin

s:=0;


a00:=StrToInt(edt1.Text);

a01:=StrToInt(edt4.Text);

a02:=StrToInt(edt7.Text);

a10:=StrToInt(edt2.Text);

a11:=StrToInt(edt5.Text);

a12:=StrToInt(edt8.Text);

a20:=StrToInt(edt3.Text);

a21:=StrToInt(edt6.Text);

a22:=StrToInt(edt9.Text);

s:=a00*a11*a22+a10*a02*a21+a01*a12*a20-a02*a11*a20-a00*a12*a21-a10*a01*a22;

lbl11.Caption:=IntToStr(s);

end;


end.



6.Natijani taqqoslash

Dastur ishga tushganda



Misol kiritib javob olinganda



Natija: s:=a00*a11*a22+a10*a02*a21+a01*a12*a20-a02*a11*a20-a00*a12*a21-a10*a01*a22

S= 1*1*2+3*1*3+1*1*1-1*1*1-1*1*3-3*1*2=2+9+1-1-3-6=2

S= 2 Natija bir hil chiqdi



Xulosa

Men shu xulosaga keldimki uchinchi tartibli determinantlarni hisoblash uchun shunday algoritmli dasturlar tuzib olsak bunday masalalarni yechishda vaqt sarflamay barchasi aniq javob chiqadi. Biz hozirda IT sohasi rivojlanayotgan paytda barcha masalalarni algoritmini tuzib chiqishimiz kerak.
Download 401.85 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
maxsus ta’lim
O’zbekiston respublikasi
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
guruh talabasi
nomidagi toshkent
davlat pedagogika
texnologiyalari universiteti
xorazmiy nomidagi
toshkent axborot
pedagogika instituti
haqida tushuncha
rivojlantirish vazirligi
toshkent davlat
Toshkent davlat
vazirligi toshkent
tashkil etish
matematika fakulteti
ta’limi vazirligi
samarqand davlat
kommunikatsiyalarini rivojlantirish
bilan ishlash
pedagogika universiteti
vazirligi muhammad
fanining predmeti
Darsning maqsadi
o’rta ta’lim
navoiy nomidagi
haqida umumiy
Ishdan maqsad
moliya instituti
fizika matematika
nomidagi samarqand
sinflar uchun
fanlar fakulteti
Nizomiy nomidagi
maxsus ta'lim
Ўзбекистон республикаси
ta'lim vazirligi
universiteti fizika
umumiy o’rta
Referat mavzu
respublikasi axborot
таълим вазирлиги
махсус таълим
Alisher navoiy
Toshkent axborot
Buxoro davlat