Differensial tenglamalar



Download 1.86 Mb.
bet70/187
Sana13.09.2019
Hajmi1.86 Mb.
1   ...   66   67   68   69   70   71   72   73   ...   187
Demak, (x0, ξ) intervalda L(p)y(x) ≡ f(x) ayniyat o’rinli .SHunga o’xshash ( ξ,x1) intervalda ham shu ayniyat o’rinli ekanini ko’rsatiladi . Shunday qilib , [x0,x1] ) intervalda uzluksiz f(x) funksiya uchun olingan y(x) funksiya (7.43 chegaraviy masalaning yechimi bo’ladi .

Teorema isbot bo’ldi .


2.Bir jinsli bo’lmagan chegaraviy masala .

(7.32) formulada bo’lsin .Biz .bir jinsli bo’lmagan chegaraviy masalani ko’raylik .Bu holda asosiy xulosani quyidagi teorema ifoda etadi .

7.11-teorema .Ushbu L(p) y=0 tenglama .bir jinsli bo’lmagan shartni qanoatlantiradigan yagona yechimga ega bo’lishi uchun mos bir jinsli chegaraviy masala faqat trivial yechimga ega bo’lishi zarur va yetarli .



Isbot .Zarurligi . .Bir jinsli bo’lmagan chegaraviy masalaning yechimi y(x) funksiya bo’lsin. Unda L(p)y(x)≡0 , x€[x0,x1] gi (y(x)) –Ai≡0 ayniyatlar o’rinli bo’ladi.

Bir jinsli differentsial tenglamaning fundamental sistemasi y1(x), y2(x), . . . ,yn(x) funksiyalardan iborat bo’lsin .U holda ixtiyoriy yechim formula bilan yoziladi . O’zgarmas C1, C2, . . . . , Cn, larning biror qiymatida y(x) yechim hosil bo’lsin deylik, ya’ni . Bu funksiyani bir jinsli bo’lmagan chegaraviy shartga qo’yamiz . Sodda o’zgartirishlar natijasida quyidagini hosil qilamiz :

Download 1.86 Mb.

Do'stlaringiz bilan baham:
1   ...   66   67   68   69   70   71   72   73   ...   187




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
o’rta maxsus
davlat pedagogika
axborot texnologiyalari
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
guruh talabasi
ta’limi vazirligi
nomidagi samarqand
haqida tushuncha
toshkent axborot
toshkent davlat
Darsning maqsadi
xorazmiy nomidagi
Toshkent davlat
vazirligi toshkent
tashkil etish
Alisher navoiy
Ўзбекистон республикаси
rivojlantirish vazirligi
matematika fakulteti
pedagogika universiteti
sinflar uchun
Nizomiy nomidagi
таълим вазирлиги
tibbiyot akademiyasi
maxsus ta'lim
ta'lim vazirligi
bilan ishlash
o’rta ta’lim
махсус таълим
fanlar fakulteti
Referat mavzu
umumiy o’rta
Navoiy davlat
haqida umumiy
Buxoro davlat
fizika matematika
fanining predmeti
universiteti fizika
malakasini oshirish
kommunikatsiyalarini rivojlantirish
davlat sharqshunoslik
jizzax davlat