Anotatsiya: Pifagor sonlari, tuzuvchi, qoida, to’g’ri burchakli uchburchak, teng yonli uchburchak, katet, gipotenuza



Download 408.83 Kb.
bet1/9
Sana15.11.2019
Hajmi408.83 Kb.
  1   2   3   4   5   6   7   8   9
Ibragimov Husniddin Hikmatovich, Termiz davlat universiteti

Denov filiali o`qituvchisi

Anotatsiya: Pifagor sonlari, tuzuvchi, qoida, to’g’ri burchakli uchburchak, teng yonli uchburchak, katet, gipotenuza.

To’g’ri burchakli uchburchak uchun Pifagor teoremasi turli matematiklarni qiziqtirib kelagan.Shunisi aniqki, bu teoremanig isboti, Pifagor sonlari, Fibonachchi sonlariб mukammal sonlar va ular bilan bog’liq bo’lgan qiziqarli masalalar borasida bir qancha matematiklar izlanishlar olib borishiga sabab b’lgan.Pifagorning klassik teoremasi quyidagicha bayon qilinadi.

Agar a va b lar to’g’ri burchakli uchburchakning katetlari, c esa uning gipotenuzasi bo’lsa, u holda quyidagi tenglik o’rinli bo’ladi

a2 + b2 =c2 . (1)

Yani ABC to’g’ri burchakli uchburchak katetlari kvadratlarining yig’indisi unung gipotenuzasining kvadratiga teng.

Agar (1) tenglikda a, b va c sonlar butun sonlar bo’lsa u holda a, b, c uchlikka Pifagor sonlari deb ataladi .

Manbalarda Pifagor sonlarini topishning quyidagi qoidasi berilgan



a=p2-q2, b=2pq, c=p2+q2 , p , q (2)

Bu yerda = bilan butun sonlar to’plami belgilangan.



1-teorema. Agar p, q, va r lar butun sonlar bo’lsa, u holda

a1 =(p2-q2)((2pqr)2-(p2+q2)2)= a((2pqr)2-(p2+q2)2)= a((br)2-c2) (3)

b1 =2pq((2pqr)2-(p2+q2)2(2r-1)) =b((2pqr)2-(p2+q2)2(2r-1)) = b((br)2-c2(2r-1))

c1 =(p2+q2)((p2+q2)2+(r2-2r)(2pq)2)=c((p2+q2)2+(r2-2r)(2pq)2)= c(c2+(r2-2r)b2)
a1 = a((br)2-c2), b1 = b((br)2-c2(2r-1)), c1 = c(c2+(r2-2r)b2) (3)
lar Pifagor sonlari bo’ladi.
Isbot. Murakkab bo’lmagan hisoblashlar ko’rsatadiki

tenglik barcha butun p, q va r sonlari uchun orinli bo’ladi.


Izoh. (2) formula cheksiz ko’p pifagor uchliklarini aniqlab beradi lekin barcha Pifagor uchliklarini (2) formula yordamida aniqlab bo’lmas ekan. Bunga quyidagi 44, 117, 125 Pifagor uchliklarida ishonch hosil qilish mumkin.Bu Pifagor uchligini (3) va deb hosil qilish mumkin, ammo hech bir butun p va q larda 44, 117, 125 Pifagor uchligini (2) formula hosil qilib b’lmaydi.

2-teorema. Agar a, b, va c lar Pifagor sonlari bo’lsa, u holda ixtiyoriy m va n butun sonlar uchun quyidagi tenglik o’rinli

a2(b2cm2- c3n2)2 + b2 (2ac2mn)2 =c2 (ab2m2+ ac2n2)2. (3)

Isbot. (3) tenglik chap tomonidagi birinchi qavs kvadratini ochamiz

a2(b4c2 m4-2 b2m2 c4n2+ c6n4).

(3) tenglik o’ng tomonidagi qavs kvadratini ochamiz



c2(a2b4m4+2a2 b2m2 c2n2+a2c4n4).

Hosil bo’lgan bu ifodalarni (3) tenglikka qo’yamiz:



a2b4c2m4-2a2 b2 c4 m2 n2+a2c6n4+ 4a2 b2 c4m2 n2= a2 b4c2m4+2a2 b2 c4m2 n2+a2c6n4.

Chap tomondagi o’xshash -2a2 b2 c4 m2 n2 va 4a2 b2 c4m2 n2 hadlqrni ixchamlashtirib, quyidagigaga kelamiz:



a2b4c2m4+2a2 b2 c4 m2 n2+a2c6n4= a2 b4c2m4+2a2 b2 c4m2 n2+a2c6n4.

Bu ayniyatdan 2- teoremaning isboti keli chiqadi.



1-natija. Agar a, b, va c lar Pifagor sonlari bo’lsa, u holda ixtiyoriy m va n

butun sonlar uchun



a(b2cm2- c3n2) , b(2ac2mn) va c(ab2m2+ ac2n2) lar Pifagor sonlari bo’ladi.

2-natija. Agar a1, b1, va c1 lar Pifagor sonlari bo’lsa, u yolda ixtiyoriy



P, q lar uchun

a2= a1 (b12c1m1 2- c13n12) , b2= b1 (2a1c12m1n1) va c2= c1(a1b12m12+ a1c12n12) lar pifagor sonlari bo’ladi.

(n-1)(c+a)2+(b+(n-1)(c+a))2+()2=

=()2

qoida o’rinli bo’ladi.



Isbot: (n-1)(c+a)2+(b+(n-1)(c+a))2+()2=

=()2

(n-1)(c+a)2 +b2+2(n-1)b(c+a)+(n-1)2(c+a)2+n(n-1)(c+a)(-a+(n-1)b)+(-a+(n-1)b)2=

=n(n-1)(c+a)(c+(n-1)b)+(c+(n-1)b)2

(n-1)(c+a)2 +b2+2(n-1)b(c+a)+(n-1)2(c+a)2 -a n(n-1)(c+a)- c n(n-1)(c+a)=

=c2+2cb(n-1)+(n-1)2b2-a2+2ab(n-1)-(n-1)2b2

(n-1)(c+a)2 +b2+2(n-1)b(c+a)+(n-1)2(c+a)2 - n(n-1)(c+a)2=

=c2-a2+2cb(n-1)+2ab(n-1)

(n-1+(n-1)2-n(n-1))(c+a)2+ b2+2(n-1)b(c+a)=c2 - a2+ 2(n-1)b(c+a)

Ixchamlangandan so’ng



a2 + b2 =c2 Teorema isbotlandi

n ning turli qiymatlari uchun (mukammal kvadratlar haqidagi) yuqoridagi teoremadan cheksiz ko’p formulalarni olishimiz mumkin.

n=1 uchun, a2+b2=c2 Pifagor teoremasi.

n=2 uchun, (c+a)2+(c+b)2+(a+b+c)2=(2c+a+b)2

n=3 uchun, (c+a)2+(c+a)2+(b+2a+2c)2+(3c+2a+2b)2=(4c+3a+2b)2

kabi cheksiz ko’p formulalarga ega bo’lamiz, keling mavzuni yo’ritish osonroq b’lishini inobatga olib, ma’lum bir qismini jadvalga ifodalab ko’ramiz:



(1-jadval)

n

(n-1)(c+a)2+(b+(n-1)(c+a))2+()2=

=()2


1

a2+b2=c2

2

(c+a)2+(b+a+ c)2+(c+b)2 =(2c+a+b)2

3

(c+a)2+(c+a)2+(b+2a+2c)2+(3c+2a+2b)2=(4c+3a+2b)2

4

(c+a)2+(c+a)2+(c+a)2+(b+3a+3c)2+(6c+5a+3b)2=(7c+6a+3b)2

5

(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2+(b+4a+4c)2+(10c+9a+4b)2=(11c+10a+4b)2

6

(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2+(b+5a+5c)2+(15c+14a+5b)2=(16c+15a+5b)2

7

(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2+(b+6a+6c)2+(21c+20a+6b)2=

=(22c+21a+6b)2



8

(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2 +(c+a)2+(b+7a+7c)2+(28c+27a+7b)2=

=(29c+28a+7b)2





……………………………………………………………………………….

Download 408.83 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
axborot texnologiyalari
o’rta maxsus
davlat pedagogika
nomidagi toshkent
guruh talabasi
pedagogika instituti
texnologiyalari universiteti
toshkent axborot
xorazmiy nomidagi
rivojlantirish vazirligi
samarqand davlat
haqida tushuncha
navoiy nomidagi
toshkent davlat
nomidagi samarqand
ta’limi vazirligi
Darsning maqsadi
vazirligi toshkent
Toshkent davlat
tashkil etish
kommunikatsiyalarini rivojlantirish
Ўзбекистон республикаси
Alisher navoiy
matematika fakulteti
bilan ishlash
Nizomiy nomidagi
vazirligi muhammad
pedagogika universiteti
fanining predmeti
таълим вазирлиги
sinflar uchun
o’rta ta’lim
maxsus ta'lim
fanlar fakulteti
ta'lim vazirligi
Toshkent axborot
махсус таълим
tibbiyot akademiyasi
umumiy o’rta
pedagogika fakulteti
haqida umumiy
Referat mavzu
fizika matematika
universiteti fizika
ishlab chiqarish
Navoiy davlat