Aniq intеgrallarni hisoblash usullari aniq integralni ta’rif bo‘yicha hisoblash



Download 136.59 Kb.
bet1/7
Sana20.04.2020
Hajmi136.59 Kb.
  1   2   3   4   5   6   7

§6. ANIQ INTЕGRALLARNI HISOBLASH USULLARI


  • Aniq integralni ta’rif bo‘yicha hisoblash.

  • Nyuton – Leybnits formulasi.

  • Bo‘laklab integrallash usuli.

  • Aniq integralda o‘zgaruvchini almashtirish usuli.

  • Aniq integrallarni taqribiy hisoblash .


6.1. Aniq integralni ta’rif bo‘yicha hisoblash. Biz aniq integral ta’rifi va asosiy xossalarini o‘rgangan bo‘lsak ham, ammo hozircha faqat bitta f(x)=1 o‘zgarmas funksiyadan [a,b] kesma bo‘yicha olingan aniq integral qiymatini bilamiz xolos. Bu yo‘nalishda yana bir misol sifatida f(x)=x funksiyadan [a,b] kesma bo‘yicha olingan

aniq integralni uning ta’rifidan foydalanib hisoblaymiz. f(x)=x funksiya [a,b] kesmada uzluksiz bo‘lgani uchun u integrallanuvchi, ya’ni I aniq integral mavjud. Unda, ta’rifga asosan, [a,b] kesmani ixtiyoriy ravishda kichik [xi–1, xi] kesmachalarga bo‘laklab va ulardan istalgan ξi nuqtalarni tanlab,



integral yig‘indini hosil etib, uning n→∞,maxΔxi0 bo‘lgandagi limitini topsak, bu limit qiymati doimo bir xil bo‘ladi va I integral qiymatini ifodalaydi. Shu sababli biz [a,b] kesmani o‘zaro teng bo‘lgan n bo‘lakka ajratamiz. Bu holda hosil bo‘lgan har bir [xi–1, xi] kesmachaning uzunligi bir xil va Δxi=h=(b–a)/n, ularning chegaralari esa xi=a+ih, i=0,1,2,∙∙∙, n–1, n kabi aniqlanadi.Har bir [xi–1, xi] kesmachalardan ξi nuqta sifatida uning chap chegarasini, ya’ni ξi =xi–1 (i=1,2,∙∙∙, n) deb olamiz. Bu holda integral yig‘indi quyidagi ko‘rinishda bo‘ladi:





.

Bu yerdan, aniq integral ta’rifi va limit xossalariga asosan,





natijani olamiz. Demak,



. (1)

Bu natijaga aniq integralning geometrik ma’nosidan foydalanib ham kelish mumkin. Haqiqatan ham, (1) aniq integral y=x, x=a, x=b va y=0 chiziqlar bilan chegaralangan aABb trapetsiya (73-rasmga qarang) yuzini ifodalaydi. Chizmadan ko‘rinadiki, bu trapetsiyaning balandligi H=b–a, asoslari esa a va b. Shu sababli



.

73-rasm



    1. Download 136.59 Kb.

      Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
o’rta maxsus
davlat pedagogika
axborot texnologiyalari
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
guruh talabasi
toshkent axborot
nomidagi samarqand
ta’limi vazirligi
haqida tushuncha
toshkent davlat
Darsning maqsadi
xorazmiy nomidagi
Toshkent davlat
vazirligi toshkent
tashkil etish
Alisher navoiy
rivojlantirish vazirligi
Ўзбекистон республикаси
matematika fakulteti
pedagogika universiteti
таълим вазирлиги
sinflar uchun
Nizomiy nomidagi
tibbiyot akademiyasi
maxsus ta'lim
ta'lim vazirligi
o’rta ta’lim
махсус таълим
bilan ishlash
fanlar fakulteti
Referat mavzu
umumiy o’rta
haqida umumiy
Navoiy davlat
Buxoro davlat
fanining predmeti
fizika matematika
universiteti fizika
malakasini oshirish
kommunikatsiyalarini rivojlantirish
jizzax davlat
davlat sharqshunoslik